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7' INTRODCTION .

. Bach elass of mathéﬁé%ical-broﬁléﬁéftequires"anu,

| ﬂénumerationaaf“tha*megnswthat~are:accessiblq,rpr_their

solution. Thusy in the soluticn :0f set-theoretical ‘
‘Problens the chelos . prinéiple 1§ admitted /I/. However,

the ololee  prineiple is good and convenient for those
problems, where an analysis of set-theoretical concepts
4¢ nedessary.. At -the same -time, -the choice principle is

absolutely inapplicable to. the sclutton of :problems in .
:~'whith it is not only necessary to prove the existence of

2 certain objeect, but:to qarry -cut its actual consiruction.
‘It 'is assumed here that, being-capable -of performing- -

¢ potentially any finite number of effective .elementary acts,
. "we obtain the soughi ‘object.after a finite number of steps.

Mezns of this kind are afforded. by modern mathematical.

"7 logie in-tEe form,:for example;:of the-apparatus of normal
"algorithms /2/... Une class et?problemsi for the solution
s

of which this appirastus 1s essential, the clags of
problems concerning the consistency./3/ of certain assump-
tions., Sometimes one admits ‘as” elementary actis those
which, -unlike:fthe ¢holee principle can- be performed in

. “practice, but which cannot be- ¢alled effective;-since

-

nothing definite can be said concerning the object obtained.
We have in mind here acts with the element of chance
(tossing e coin, registering an elementary particle 1in a

'l'connterg?étc;ﬁ;- Algorithms:-with chance elementary acts

are successfully used In the solution of scveral computa=-
tibnal;ﬁroblems;rforfexamplb;fin1solving~di:feren;ia1¢,'
eguations (the Monte Carlo method /4/).. At the present
time there -are in tybénneticssan~extensive,grquppof,,.;
probiems, where the existence of various obiects or facts

is estsblished trivially and,within the framework of the
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clysstent 6€f¥nitiﬁﬁf6ffth§“ﬁig§rithm,ﬁﬁif?léffé?tivély,

although the performance of the solution sometimes becomes
impossible in practice, owing to its cumbersomeness. Such,
for example, are problems connected with the coding of .
information, problems connected with the analysis and
synthesis o% networks /5/ etc. Here naturally, the gues-
tion arises of .the necessity for refining the classical
definition of the algorithm, "One must expeét here this
refinement will take into account to &an even greater
extent the singularities of the particular class of prob-
lem, .The latter, possibly, leads.to an éxpansion of the

- .concept of algorithm in such s way, that individual types
of algorithms tan no longef be ‘compared as. regards their
strength. It is premature at present to make any general
forecasts of how the concept of algoriihm will be refined,
since we have far too little information on the specifiec
nature of the individual classes of problems, In the
present work we make .an attempt tc ¢larify the algorithmie
difficulties that arise 4n solving cyberneties problems,

- wWhich are not of trivial solutions on - the basis of the -
classical definition of the algorithm, but this solution
1s not realizable in practice because of its cumbersome-
ness. N o '

. .~ -By way of a model -object we use c¢ontact networks,
which realize functions of algebraic¢ logiec. We pose for
‘this objeet the question of thie construction of -a network,
that realizes the function £(%., X,s eees X ) and which
has a minumum number-oftcontaé%s(mgnimal nsBwork), which
We shall denote by L(f), It is known that there exists a
trivial algorithm for the: construction- of minimum-contact
networks. This algorithm consists of the following. -
Assume that it is necessary to-cdonstruct "a minimal contact
network for the function f(xy3 X535 se4, X,) of algebraic
- logic: Let us consider the;éequence sgts o v

by Gy BT
vwhere Gy consists of all the two-pole nets with i-links,
Each such set has a finite number g; of elements, and /6,

e T w . CoNE
| - (amm) e <(Cmr)-

We shall sort out in some sequence.the nets, first from the

set G,, then from G, etc, - In each net from G, (1 =0, 1, ..

we shill vlace in all possible manneér on- the links the

SmbOlS - from the alphabet X1, seey 'Xn, Yl, ‘s o-,”_‘x-. e -

. Obviously we-shall«have-(2n$ixmethqu of_placing,?he
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P2

symbols. For each rnoividual placement we obtaln a two=

CuiOP of algebraic 1ogic (i.e., a function of clas= Pz

, /8/), which describes the admittanoe of the network 7Z

1culated either experimentelly or" algorithmically /5/.
In the case. when T_“
' o ]!(x,. Ty ons A) =[xy, z,, T
tnen +he neuwork ﬂl gives us. uhe necessary network, Wthh
alizes the furction f(x1; x2, ceey x )._ Sinee 1% is
known that for eacb function (x,, xz,‘..., ). from P2
it is possible tc construct a. network tha+ realizes it,

ith not more’ than L(n) conuacts, where
' o " L¢n)=  ‘max ‘L([)

f(x x,., [ 23

{the maximum is- taken over all the functions of a]gebralo

rogwc, whioh depend on n variables), our process must lead

’to such 2 network. Furthermore, the first network 52/

constructed by this algorithm and reallzing the func ion

£(x's Xpy seey x ) will indeed be the network with

, mlnlnum number of contaots. Thus, the qlgorithm grven

here for the synthesis of networks is based on the sorting
out of all the networks, Let us estimate the volume of
the'sorﬁing_necessaryito-oonstructlwith;the-aid of this
elgorithm a minimum network-that realizes the function
£(Xy, Xpy sesy X )o This volumeis characterized by the

number of the reviewed network and has an order of

3




magnitude

() eyt

If it is considered /9/, that L(n) ~ Zn/n, one can already
visualize the speed@ with which the volume of sorting in-
creases, It is seen therefore that this algorithm has low
efficiency. The large volume of sorting makes it difficult
to make practicszl use of this algorithm« Thus, in ref,/1C/,
Higonrmet and Grea, by sorting out all the nets with links
up to 6 inclusive, obtained all the minimal networks that
contain not more than 6 contact, for functions which depend
on four variables. However, to make the next step, l.c.,
to scan nets with 7 links, is practically impcssitle,
Shannon proposed in /11/ a scheme of a machine for the
synthesis of networks, which realize functicns of four
varizbles. This machine makes it possible to find, . for.
the majority of functions, minimal networks, but for this
it is necessary tc perform switchings. .Conseguently, to
find the solution it is necessary to sort out a certain
number of commutations, corresponding to-the networks,
Therefore the efficiency of the snlution is deternined by
the searching time of.the required commutation. This

time becomes large (practically infinite even if the

search is automatized electronieally), if an at-
tempt is made tc construet minimal network with the aid
of analogous machines for functions depending on 6 or

? variables,

Thus, the practieal use of the trivial algorithm is
possible only for the first several values of n. Further-
more, the use of machine technology ylelds no practical
advantages over human capabilities. There are grounds fer
assuming that for any method of constructing a minimal
network for an arbitrary function from P,, it 1s necessary
+o have some sort of a form of 2 sorting out of aprroxima-
tely the same order as the trivial algorithm, We arrive
at the necessity of modifying the statement of the probvlem.
Two volumes are possible here. A

1. Network Not Minimal, .In this case it is
necessary for any function f(xy; Xoy eeey x,) from P, tc
construct a network with a number -of contacts equal to

L(f), but having an order not higher than L(n). The

™
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2prob1em was first formulated in this form by Shannon /12/
- and was finally solved by uupanov /9/. The latter has

:shown that for any function f(xl, xg,...., x ) it is

poss*ble to consuruct e?fectivelv (with a sorting that is

coqsiderably smaller than the sorting of all the networks),

lthe number of contacts of which has: an order zf not less

than 2n/n. It follcws from ‘the results of /9, 12/ “that

glmost all the functions of n varlables require asymptot-
ically 2%/n contacts. Consequently, neglecting the large
number of functions, 1t is possible to construct for any

of he functions from P2 almost minimal networksa It is

l“:

ound here that by avoiding *he sortlng, it is possible to

ﬁ_construct compaot networks fo” a majority of funections,
- but these networks are in themselves complicated, sc that

" the nurber of contacts grows as S°/n. On the other hand,

wsi ng ‘he Lupanov algorlthm (without enrolling additional
1hfovmatlon) ‘we are not certain that we, obtain compact
networks (close totminima1)~also for those functions,

which admit of a Tealization of a circuit with a nimber

of contacts having an.oroer‘lower than 2%/n., This

algorithm is more likely to yileld for these functions, as

a rule, a'poor resul Lhus, the follow*ng situation
qrises; tne algorithm yields compact networks for func+ions,
the mlnlmal neuworks of which contain apnroxlmately 2%/n

contacts, i.e., for functions which are of little practical
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- interest,. and gives networks of unknownudegreé‘Of:cdmpéct-§

ness for functions which are of practical value. -

- 2, Failure to consider all.the functions of algebralc
logic. In this case one narrows .down in a sensible manner
the number of functions under consideratitn to a certain
class @ < P, It is then possible to expect that the
construction 6f minimal networks, which realize all the
functions of n variables from the class Qfwith the aid of
. trivial algorithm ; Yyay~ substantially.less
sorting of ‘the ‘networ he -construction of minimal

networks for all the.ruﬁctions of algebraic logic, which
depend on n variables. It will be exactly so if (see
estimate of the volume of sorting on p. 76 /ot source/)

ﬂl&@?ﬂﬁumi

. B (M) = max .
T S =‘L?$%mu!?rﬁiﬁ?€?PQQ<i
In this case'the_efrectivencss”of-the.triVial'algorithm"
(i.e., the relative applicability, determined by the maximum
value of the number n, at which it is still possibzelin
practice to construct minimal networks for all functions
from Q of n variables) increases considerably. Thus, the
inerease in the effectiveness of the trivial algoritmm is
connected with the fact that the functions of n variables
from the class Q admit of a substantially simpler network
realization, than arbitrary functions of n variables. Con-
sequently, %he'question arises of separating out the "simplc
classes Q, i.e., such classes, for which Lg n)<< Lin),e
Naturally, to avoid a viclous circle, -1t 18 necessary that
all the ciasses be defined not in terms of the properties
of the network, but in terms of pro rties of the functlons. -
The eonstruction of such classes and the clarification of
the possibility of the network realization of the
functions from these classes has been ihe subject of many
investigations: the realization of linear functions /13/,
the realization of symmetrical functions /12, 14/, the
synthesis of nonrepetitive networks /15/, the reaiization
of functions that have a value of one on a small set of
' . . /14/, etc, Inasmuch as the determination of
the “eimple" class requires in the finsl analysis that
In(n) €< L(n), i.e.y it 1s based on a comparison of
cértain functions with other functions of the same number
of variables, having the moet complicated minimal networks,
the -question reduces to the construction (for each n) of
a function that depends on n variables and that has the
most complex network realization (i.e., to the calculation

where

o
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~ of the value of L(n)). The problem is formulated more
‘accurately as’ follows. B R N

) It is desired to construet for each n such a function
-(xl, Xps eeoy Xy ) (; Py, that L(f) = L{n).

In solving this problem.we encounter a principal
diffieu;ty. Namely, sinee we do not know beforehand the
value of L(e),'@t becomee'necessary to construct for each

- function f(xl; xz;'..;, xn) a minimal network amd to cal-
culate L(f). After the values of L{f) are found for all
the functions tﬂat depend on n variables, we can readily

. obtain also one for which L(f) has a maximum, i.e., has

"2 value L(n). Thus, to find the unknown function it is
necessary to carry out a sorting out of all the functions
that‘depend'enln variables., Naturally, such an argunent,
although 1t does bring to mind the idea that the sorting
out of all the functlons remains unavoidable in the

| solution of this problem, it cannot serve as proof of
‘this fact. | ‘

It is quite natural for the solution of the problem
to depend on the choice of the means.

, In the present paper we analyze solutlons of this
problemte? in a class of algorithms, vhich admit random
elements as elementary acts, .zl 1in a certain class
of ordinary algorithms, . It is shown in Sec 1 that in .

class of algorithms with random elementarj acts, the




problem, which represents a certaln Weakéninz of the dis-
.cusseﬁuproblem, admits with probabllity of uﬁiiy”a poéitive
and very simple .solution.. On thglothéi ﬁaﬁd,‘as is
established in Sec,hg in thg_natﬁrél'subclésé;of ordinary
algorithms, i.e., in the_claﬁgipf‘the,gpléalléd regular
a;g-o;«ithms;-, the constructlion o:_zf‘v the s,eq'ger‘l,_'c_ev' { fn§ of the
functions f£(xy, X,, ...,,xn)vrq;“eagth(fé) = Z(n), leads
te the construction of gll.fhe.runq;ibﬁsfof aigebraic

- loglec, i.e4y to a éqmplete;scrgiﬁgv§g€; fhén wewgive a
comparison of. these two,approachééwtovﬁhe sqiutién‘qf the
problem.  In Sec 2 we construct a\fémily.gfifhe so célled,
invariant classes and stgdysfhéirlﬁrbﬁerties.' Ih.Sec;3

We clarify the possibilities of the network realization

of funetions from the invarianﬁ-;iasses.; iﬁ”particular‘

it is found that all the ipvariént §1és§es;Qﬁ. 'whgfe 5
.1s a parameter which nan;be'determinéévin spmé manner

(0 £ G £ 1) have a simple as&mpfotic_é#pfeésiqn for
LQG‘(n)’ namely Ce o
- Loy~

Conseguently, it becomes necessarfupofcanétiuét for a
continual set of classes a synthesis method which glves
an asymptotic value for L,{n}). We see therefore thatl

the results of 8Secs. 2 and“3, are in-adédition to serving
auxiliary purposes, are of independent interest,

Finally, we point out that this problem arose in
1954--1955, The very.idea of the proof came to mind at
the same time., However, the lack of an asymptotic
expression for L{n) made it impossible to realize this

8
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idea. It was therefore necessary to publish in 1956 /1k
18/ a few extraneous results, The final solution oecurrdd

soon %fger Lupanov /9/ cbtalned an asymptotic expression
for Linl. L o '

1. SOLUTION OF THE PROBIEM OF THE CLASS OF ALGORITHS WITH
RANDOM EIEMENTARY ACTS .~ =

The statistical approach, which we are ahout to
discuss, uses certain peculiarities of the network resli-
zation of functions of algebraic -logle, which we mentioned
briefly in the introduction. We desl, primarily, with the
asymptotic behavior of the-quantity L{n), namely with the
faet that , .

Secondly, we have in mind the result obtained by Shanncn
/12/, that for any &£ > O the fraction of all the func-
tions £ of algebraie leogie, which depend on n variabies
and for whien . > TS oo B :

e Ry gt "')27:‘
relstive to the total” nitnber of functions cof algebraic
logic that depend on the same n variables12 tends to zero
with increasing ns However, as shown by Lupanov /7/y &
stronger result is indeed obtained., Namely: for any
£ > 0 the fraction of all the fuhctions £ of algebraic
logic which depend on n variables and for which '

' L(;)<%-?[ i_..;..(z_ ) _"l.i.tz.ﬁ ] ,
with respect to the total number of funectlons of algebraie
logic that depend on the same n variables, tends to zero
ith inereasing n.

Definition. Let € be an arbitrary fixed positive
number. A funetion f(xl,'xg, coey xn) from‘P2 is ecalled
E -simple if o |

Ly <= Lim,

9




‘and §-complex, if o IR

LFE> (1 =9 L(n)

From the preceding tesults it follows, incidentally, that
for any £ 7 O the fraction of E-simple functions from
Pz’ dependent on n variables, relative to the total number
of functions from Pzg-which-depend,og-the,eame n variables,
tends to zero wi*h increasing N - ' t T f -

Let us now formulate our problem in the following
mannei: we wish to construet a set MO of the functions of
algebraic logiec in the form

MomUy(z), @ B ooes flE0 TS e T b

for which there exists a sequence { k} such that

L{tn ) <

Obviously, this problem represents-a certain weakening of
the problem stated in the introduction.,}In fact if we are
able to construct for each numher na function £ (xl, 12,
ooy X)) such that - R
LY=L,

then the set o »..nzim,ﬁ‘;.d,__ |
MO =1{f,(5), Ja(Z T oo FulEer Zao o os Taboives )

is characterized by the fact“thaéi T
, , . 'L'B i
for any n. Consequently, we obtain a solution>of the .

problem just stated.:

‘10




Let us consider an algorithm, vhich constructs a

N; ;'Tcertain set of functions

M"Ul(zl)’ ’!(31’ 2,), sl fa(‘v 331 X ,\');‘,.. . }

' in the form of a sequence, 1.e., that the n-th step
the algorithm constructs the function f (xl, Xpy esey X, ).
The funetion is constructed by the writing out its
tabI”s 1n the following manher: ‘on the 1eft part of the
table one places the eolumni in whieh the sets of values of
the variables x,, X,; «se) x (a total of 2%) are placed
one under the other in their natural ordér, and on the
right part, next to each set, we place ‘successively the
value 0 or 1, depending on the result of ‘tHe -tossing of
Athe coin, i.e., depending on whether "heads™ or "tails"
are obtained * R '

For example:‘

P Bn_g, "nh L “Pﬁmlsm'ﬁﬂouu" Mevenne
i Ui 6 MoveTRd ! grm
. 0... 00 Tep63 A
0... 0 ¢ ;wnjzéﬂg T
. 0... &+ 0 Pemetxa ° v
; 0. 1.1 | Topt t
T T I

1) Result of tossing the cotn, 2) Value of the
function, 3) Heads, 4) Tails

The algorithm described admits ‘of the tossing of
the eoin as one of‘the elemehtary actsy’ ‘In this connee-

heads or tails is the same.

11
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: tion, repeated applications or the algorithm lead, general-

ly speaking, to different sets. Let ‘ug denote by m {M}

the set  of all possible results of the constructions.

| Tt.1is obvious thatm had the cardinality of the continuum.

Iet. us ta.ke an arbitrary mumber . 6 = 0. We ‘consider the
subset m fromm consisting of those and only those

- sets M6 s each of which contains the finite number

& =complex functlons.

Theorem l.l. The probability P(m ) that the
result -of construction will be s-set from m , 1s equal
to zero, i.e., P(m£ ,

Proof. Since the construction of the function that
depends on n variables can 1ead with egual probability to
each function, the probability of construotion of an
g-oomplex function is. Ppy where P, represents the fraction
of the & -complex functions which depend on n varisbles
relative to all the funotions which depend on the same
varisbles, 1.e., to 2% . At the same time, the probabil-
ity of constructing an a-simple function, which depends

on n variables, is equal to 1.~ P- We have seen earlier

‘that p ~» 1(n —» o2 ). let us consider the arbitrary

set M£ € ¥¥L® . By gefinition in this set, starting wit™

a certain place (to be specific, from the n +-1-th place),

all the functions are &-simple, and the n-th function

12
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is E-compléx. If we place under- e'achq E—compléx function

the letter C, and under each 2 -eimple one the letter S,

then the set will have the form

ln fz’ coos faen lm Frar Frozr -
....... ....:..,.., [y ‘ls,.o.s -oo

£ £ -
We denote bym the subset of such sets M, that iri each
of these the n-th funotion is € —complex, and all the

cucoeeding ones f,-simple. Obviously
UmiU

is the direct sum of non *nuereecting sabse*’s. Let us
cal oulate the probability P( m£ | |
P(ma)~pnll<t—p) =0, .acnca p;-»i(z-—»oo)

From this it follows that

P(Mm')= 2?(93:.)»0

This proves the ’cheorem completely.
It follows di*ectly from +he theorem that the

probability of coostrueting a set of f\mctions, in which
is contained an infinite number of £-complex functions,

w8
i.eey the probability of oonq*'ructing a set “from O \ Ak

is equal to 1l. .
We deno+e by m the subset from m , consisting

of the sets M such, that for any 67 O the set M~

contains an infm*te number of g-complnx functionse

13




O
Theorem 1.2, The probability P(m ) of construc-

ting a set M0 from m is equal to 1, 1.6., P(?B'LD.): 1.

_ i m @ L 4 ,
Proof. Let M @HMI. This means that there exists
an £ such that the set M contains a finite number of
& -complex functions. It is alsc obvicus that for any.
£! £ € the set M contains a finite numbver of £'-compliex
functions. By virtue of these circumstances, we have
m"-::\m\\\_)‘m .
‘71:}
where
8,58 ... g 5. —> 0(n—» o)
On the basis of the preceding theorem P{ ) = O for
any Epe Therefore 4
' P =Poum)=1L.
Thies proves the theorem.
The last theorem shows that we can construct with
v " . C . :
probebility 1 a set M , whieh for any small positive
nurber € , no matter how small, contains an infinite numbew .

of &-complex functions. Consequently, we can construct

with orebability 1, a set MO, for which we have for a

certain sequence of numbers n (n, < 2, <& ees)
v » . J 2 A A 2 ;

L, (nk
——-‘E’—(gr-l;—)-)'——al(k» <),

We have thus obtained, with the aid of this algorithm
s solution of the problem, stated at the beginning of this
section. It must be emphasized in particular that the
algorithm “constructs" the sought set with probability 1,
without seanning through all the functions of algebraie

1k




logie, ' an €lement of ‘chance 1is
seq/; F-th1sS, W& are not actually sure that
any individual sample of the set M, constructed by this
algorithm, will metually contain for each & .an infinite
number of &-complex functions. Furthermore, since the
foregoing algorithm contains chance .events -it is im~
possible tc prové by any means whatéﬁer'%hat the set' M~
contains for every £ an-infinite number of & =-complex
functions. True, there may be encountéred "such ‘algorithms
of random acts, for which. the proof -of this faet is.
possible, but this will be evidence that the “random acts
can be excluded from -the .algorithm.. L

2, INVARIANT CLASSES AND THETR PROPERTIES. =~

As already noted above, the class of all the fune-

tions of algebraiec logic, which depend on not more than

n variables, contains almost entirely functions which have
a "complex" network realization. . However, in practice as
_a.rule one does not deal with arbitrary functions and,
- furthermore, with the "most complex ones."  Naturally,

the question arises of finding the classes of functions

of algebraic logiec, which are not .of .a simpler h¥twork
realization, than in the general case, "Examples of
synthesis of: networks:-for individual classes have been
investigated by various authors /12-+20/, “In this sectlon
we shall construct and investigate a sufficiently large
family of classes, containing apparently'all the classes
‘that arise in practice.of networks synthesis...

Let f(x1,....,”xii1, xi,,xi*l,i...,”gn)_tha |
function of algebraic logie., The variable 314251051195
nonessential or fictitious 1f - |

FEp oo z_-,_;,; 0, x5y - "’.tk.?s)ﬁf«(‘&' SN SR IR TURE z”).".:
A variable which is not fietitious 1is called essentlal.

‘Definition. The funetions f and g are called equal,

if after eliminating the iictitiong”jgg;gy}gsjﬁggSe func-

tions gdarespeéfiﬁeiy.Qo gynctions £' and g éyph that

7’;3'. )

15




Thus, equal functions differ, peﬁhaps, in the presence of
fictatious variables.; It is most natural to assume “hat
if the functlon £ is speclfied, then all the functions-
:equal to it are also specified.' ‘ 1,‘
L Definition.\ The sét Q. of functions of algebraic
logic 1s called aniinvariant class if. s '
l) For each function f(xl,A 2, cesy x )-f.Q zﬂlolass
- Q conlime 811 the functions equal tc it
. S 2) For each . function f(xl, 2, ceey x, )15'Q;tﬁbclas=
n»Q canﬂnaall the funcuions obtained from f by renaming
"(without 1ﬁentification) of the variables ) : _
.3) For eaen function f(xl, X5y cves, X_ )é Qﬂ,class
QAazt'the -nnctions obtained from T by any substitution of
;~COQSuants in place of _;f¢  variables (not necessarily
all the variables). ffl o | o | ,'
Corollary. lf an invariant class Q contains *be
function f(xl, Xyy . 0eey Xp) ?é -const, then Q contains
‘both constants O and 1.,
*L&LﬁbAaax&uMbmﬂA» axuhuu»v » qup&; ol
?ﬁif?%t/' | network considerations. In~fa¢t if a
'network'aL is constructe&, realizing the function

"f(xl, Xy eesy X,), Ore can.obtain without difficulty the

T o From now on we shall understand by "renaming" of
variables the rerisming of variables without identification.

16
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networks A7 realize jfunctions derivableufrpm_flpy‘emg;oying
operations 1, 2, and 3. At;the_séme time, if a certain
class of functions:is realized,Ait_is.pos;ible to.gséume
that 1t 1s an . invariant classox | :

..Let .us give examples cf invar;ant cla ,

1. Tpe class L of all linear fuaniqns,fi.e.,_the
~ functiens f(?i,‘xz!ﬂ'QQ, x.)_{qr which the following |
- representation is possible .

f(xy Lo« ,,)—co-}—c,r, i c,z,« “e ,r (mod2)

2. The elass S of all .symmetricai f‘unc‘»:ions, i€,
functions S(xl, xg;_,.., xn), the values of which do not
cheznge for any rearrangement of the essential variables,

- -3+- The class PN of all the functions of algebrale’
,logic,.which deprend essentially on not more than N |
varizbles. L . ,.

- 4, The class M of gll_monotoé}c;fgnctions, 1.4y
functions f(xl, Xy3 seey x,) which can be specified in
the form of a formula that_COntains;only,the,gpgrgpions

& ana V. | o
5« 'The class HO of all the functions £{Xy; %, eeey
X ) which are identically equal to zero.
In view of their obvious néture, we shall om*t
~the proofs- of the invariance of. these classes. .

We now proceed to clarification of the descriptive

17




structure of invariant claseesox For this purpose we intro-
‘duce several concepts. . o __' .

. Definition. The funetion g(xl, Xys eeos X ) is
'called the generatwng element for the invariant class Qs
if g Eg Q and either g(x x,:

2
n-= O, or for any ‘substitution of the constants we obtain

[ Ooo, X ) ""‘ const With

the function g! & Q. - )

R Corollary.'ylf'g(il, Xy sedy xn)~is the generating
element for the invariant class Q, then all the variables
X4, xz, eery X, aTe essential, | o

Two functions g1 and g2 will be called equivalent,
if they are obtained from each other by renaming of the
variables. | '

Let us construet maximal systems of pairwise non-
equivalent generating elemeﬁtS'for the invariant classes,
listed in the foregoing examples:

1. Glass L. Since from any nonlinear function one

y 5
can construct by means of operatiunv 1, 2, and 3 & non-

linear function of two variables and’ any function of

J
one variable is linear, then the generating elements for
the class L will be, accurate only %o equivalence, a

function of the ‘type
S .2y + Az + By + € (mod 2),

There are only six pairwise nonequivalent functions of this-

'type, qamely.

18
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2.4 Class S.; Since for each of the nonsymmetrical

- functions h(xl, Fpy sees Xy ) there exist two sucn variables*

- for the seke of definiteness 1et these be xl and x2 -
for-which - _,
h(z,, z,, z,, SR z,)*h(z,, z,, .t,. “eey z,),

then it is possible by substitution of variables to obtain
from it a nonsymmetrical function of two variabies. We
have at most two nonequivalent generating elements

- o -zy. g.-z\/‘

Cless fN It is -easy to see that the maximum
system of pairwise nonequivalent generating elements “or ?N

consists of functions which depend essentially on N-+ 1

- variables, and is. therefore finite.

4, Class M. _Since from each nonmonotonic function.
it is.possibley by substituxion of the constants, to-
bbtain a function x, all the generating elements for class
M are equivalent, g = x.(;u-ﬂ

Se. Class H As follows from the foregoing

0°: .
corollary, the class H has 2 single generating elemenu

g = 1.

K Since any substitution can be represented 3% a

produet of transpositions.

19




. Dery Iaet g(xl, x2, voey x ) be an arbitrary
runctién; Trie set'Tf*_ot all the functions h(yy, ¥p; sees

each of whieh can be redueed to a function g(x s Xpy seey x Yy
by substitution of constants and renaming of the: variables,
is called a peneil, generated by the funetion g(xl, X,
...,x).w_\_ ‘ ’_ '
c°r611ary 1 It g 1s the generating element for
the invarient class Q, then 77' < Q.
2, If gl and g2 are equivalent functions, then
=T, , - |
3. If g and‘ g2 ‘are nonequivalent generating
. ele::_e-nte for "the inva.riant class Q, then 3 6— 3 2 and
g, e T!'u 9 and consequently not one of ‘the pencils

T and T contain each other. T :
g1 g2 | -

From this we o’otain directly theorems that explain
| the eenstruction of invariant sets.
Theorem 24 1° For each invariant class Q ‘the

following 1dentity holds';_wm

(ﬁai,::a?u

where the sym is taken over the maximum system of pair-

wise nonequ:!.Valent generating elements.

Proof. let h(xl’ xz, scey x ) é Qe . Then
Obv10u31y h é’ C u & Y IBt nw h(xl, ng saey
x,) & Q. Let us prove that h é c Uﬂ_}”

20
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Ifn =0, thenh is a constant and is therefore the
genera*ing element 81 for the claas Qe |

If n ;§> 1, then in any substitu+ion the conqtent h
. gees into a functeon +hat 5elonge to Q, or e;qe there
exisis a subﬁtitutiﬂn of ccnstantq, which trarsforms h
into a function that does not belong to the clasc Q and
aepends on 1ess than n Variables. In the forme* case h is
: equivelebt to certain geﬂerating element gi eor the class
Qe In ‘the latter case, after a finite nurber of steps we
~.arrive at a function ‘that is equivalent to a ceruain
generating elemen+ gi fo* the class Q. It is shown Lbereby

thet there exists a genera*ing element gi for fhe class Q,

such that h € _\Tév ;. C?RS?Q.QQQ?Q’, h € ¢ U Te .

This proves the theorem completely.

-

This theorem allows us to express the ciassesuh, s,
PN, M, and}HO in terms of ﬁencile that correspond to the
maximal systems eonstrueted aﬁove,‘which are pairwise rot
equivalent to the generatihg elements. For example

S= C(“,WU““/') ,m, M CI]—

It is obvious that the reverse proposition also holds,

Theorem 2.2, Let G' -{giy be an arbitrary susset
of funetions of algebraic logico Then the class Q= C(J'ﬂ—
1s invariant and a certain maximal system of pairwise aon-\
equivalent generating elements for the ciass Q afe con:tin-

ed in G,

21




Na*urally, this gives further rise to the question
. of the cardinality of the set of all the inVariant classes
of functions of algebraic logic. The answer to this
qaescion is given by the following theorem.
Theorem a.3° The cardinality of the set of the in-
va"iant classes of functions that depend on the variables
1, xz,‘..., X, o0 is equal ‘to a«[}skxytj,
Proof, 1In view of the fact that each invariant
class Q can be specified in +he form C u} fb “, then the -
. ¢

'cardinality of interest to us is not greater tnan the

‘ cardinaTity of +he set of sets {~g£} .e.,_ 4 . let

us show that the cardinality of +he set of ail invariant
classes is not less than 4. For this purpose we con- L
stract a continual family'of"pairwise different invariant | és”‘
classes., We'pnt. I B 3

t‘.=zl R z"lv;l "?';iol (i>i)'

% is easy to see that f 6 .. 'wn’e’n.i‘a%.- o Let

%4
f‘ “ ¢

{ilg 12, .oo &and (Ji :lé‘ jl, uz, s } two

fferent subsets of natuval numbers. We denote by

E ‘r ,." il’ fi 9 soe ?&and Eﬁ -{ fj [ sz ooo.’}o
Cbviously the classes QO and Q obtained from E, and %/
".'by their closureSwith respect to the operations 1, 2, and

3, enamerated in the definition of invariant classes, are

different inVariant classes. Thus, the ‘cardinality of the

22




set Qf-theiclassgs-géf is eéual to tﬁévcérdinélify of the Lf?{
c;.-ubeets;{x B of the natural hux;:befs, l.e., 1t 1s equal to+, T
-ni= ‘proves. the theorem... ' ,
Now let-us proceed to a study of the metric prorer=
tiesof invariant classes.

. We - denote by .P_(n) (or respectively by P*(n)) the

Q-
umber of - functions of the invariant class Q, which depend
on n variables X;, Xy seey. (which respectively depend
aubstantlally on n variables xl, Xy eeey Xy o For what
is to come it is useful to bear in mind the trivial rela-

tion:between P (n) and Pa(n)

- Po(n)y=CRP3V) + CaPg( l) +...+ c "PQ ().
“Theorem'2.h. If the invariant class Q does not
. euntain all the fanctions of algebraic logic, i.e.,_

9 FE Ry then g L ‘ L
B 7 0 et a - o

. Proof. For Q = /\* the stateménp is trivial, since
P (n) = O. ‘ ‘ L o _
| Let now @ =& /\ . Since ngfé‘fé, ﬁhére.gxists
siuch a number m, that a cgrtain function g(xl; xz;....,»xm)g
Let us-take n = m 4 k and consider arb;trarilyuthe

operation** f('Xl, seey Xm-,'xm?l, sesy xm*k) é Q. For

* Here A\ 1is an empty set.

**Such a functions always exists, since fictitious
variables are admitted,
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this function vwe can write out 1ts expansion in the variables
v, s ---~--§‘,

m'tk

f&p on . %’ tﬂ,,, oo .z“gﬂ e

’ .00’ :
m-&l | . ?v#""“-

t

-0 3,...3

. : w“’p vy r%» ﬂ’l' -.‘

1

0= X

(where, as always, x = 'x a.nd It is obvious that
A ._-"~ o ’z‘i‘m’ .,.‘ ‘”‘.)GQ

fovorp o

%W mfk)' Let (0 denote the number

 of functions that depend on the variables xl, ceey Xy and

-th

(Mm*l, ...’

‘which do not belong to the class Q. *By the nature of the

construction f > 07 ‘Hence'
‘*“f?1‘y<¢gr' !F’

w-n+ﬁ e .

and

From the latter inequality we obtain directly the required
recult. . | |

'fhe theorem jus‘:t:'pré.ved shows that the classes Q,
which do not contain all the functions of algebraic logie,

are liquid compared with the class P of all functions of

Lol

algebraic logic. ’ , - S \

Theorem 2.5. The sequence of mzmbers -{\/ P.(n) j

~T

tends, without increasing, to a limit and 1 < lim A Q(rz
Y- D
for any non;-empty invariant class Q.(l.e.y, @ % N )e

Proof. Let f(xl‘,‘xz, eoey ':xn*l) be an arbitrary
function from the class Q, depending on (n ¢ 1) variables.

Let us examine the expansion o

ol




f(zp -. o zuo ..g)-z.,,l (I,' “ney 2,.1) V‘;‘.J(.t', covy By 0)..
Siﬂ\«e f(x 19 °* x n? 1) and - f(x ‘eeey Xn, 0) belong to
the class Q, then | -

Po(nt1) <.P$(n).
Hence’;_ . ‘ W -
L 'PQZ))VTG(n+ ..
: m,
' ' : : b2
It is clear that when Q -;AA , then 1 5 J P (m)
- 1:” 2 ' l‘h : ' "Q
L V. ¥ =2 Consequently, lim ‘,/‘ Q\n) exists

and 1s Z.cluded in the segment [_l 2J s Ge€.d,
" Corollary., If the invariant class Q = P, then
. ’WVT’M_H<2
In fact, if Q£ Py, there exists a function
o : - g(z,, Zgy ...y 2,)€EQ. '

Bui then -
\ hm VTDQ(n) < V Py (m) <2
. ﬁ?‘v
w2
Let us now calculate the values of lim PQ(n»)

N2
for several invarilant classes. B

N - 2‘ -
1., Class L. Pr{n)=2"'¢ iim ]fm-lim}/r“-l.
2, Class S. P*( )= Zn*l"- 2 vhen n >> O and

P*(f“) = 2. Therefore Pg(n) = 2(3 - 2") ¢ 2 and

m

lim =\ Pg(n) = lim 2GR - 2N s 2 =z L -
R -
3. Class PN P,,m(n)<<(;"'22 *fi<limVP,u(n)<hmV -t

L, Class M. It is easy to show that (see, for
K ) ) n cl” .

exanlple sy /21/) ﬂﬂ (.,,) < ”c”;?f.}(’)’\»ﬁ-.




»
2

2 ..
Hence » I hmV Py (n) < lxm ,.7;', limnV*= i.

A=

5. Lhors H, Pg.(n)—-i¢'lmvl’_""l_n)anlm}f_-rf.:
6. 4@.&4« (), Q.(n)<2“-—-n 142 2‘<3~2" n

ol <hm|/ Q.(n)<hmV3 2% = i,

w

— , |
Thus, lim \)-PQ(n) =1 for all the invariant

nIr0
classes Q constructed above. From this, in particuler,

on the basis of theorem (2.2) we have the -follcwing thecrenm.

Theorem 2.6, The cardinality of the set of 1nvariant

< 2"
classes Q, for which lim PQ(n) =1, 1s 4. ;

iy 2
In connec+1on with the analysis cof the fo*eeo*ng

evamples, the guesiicn arises of whether there exist in
general invariant classes Q, for which 1 <: ,&}@L JETTZ3
< 2. To answer this question let us consider the
following example. ‘ |
Example. We denote by Ql/2 the class cons;su;ng of
the functions f(xl, Xys esey X ) such that

j_'_(zr Z, .- . ".tn)_"’f [C NI z;)& F (2 T - o os Zahs

/- \ ' 3
1 § Y . ' - Ay,
Whel"e 'f' \94‘1 b] ..t ‘,‘;_ ’) ey .,/ ",i' ',..“'!_ K’b C f}(\""" - 4/ il .ji' ‘f’L. N \!, vy :

is an arbitrary funcbion of axgeb*aic 1ogic, all the
escsential Variab¢es qf which are contained amoug the
'variables x esesy X
4.° s-;r
Tt is obvious that Q1/2 is an 1nVariant class. To

estimate the number PQl/E(n> we turn to the formula
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£ f' & £'', from which it is easy to see that on all

Wm;fa s 3 «.} such that £1( ) = O, the function
assumes a value of 0, and on the" renainin‘gvses:%i we have
f = f" Consequently, the function f, for a fixed
function f' 1s determined completely by 1ndicating the e
subset of all suchmmul £y for which f'(g‘ ) = 1, and
£11(L) = Ou Let now f'4x14x24 ...4x (mod 2) or
£1 = xq 4 x2‘~0 ces 4%, 41 (mod 2. Since both of these
functions are equal to unity exactly on 207 -1 sets, then
we obtain in each case 22 a-1 different functions f, with
0 being the only function which “wil}. be constructed in
éithen case. Hence Pyq /2(n) = 2x ‘2.2n.¢1- 1. On the
other hand, if f' = Xgy $opee ¥ Xy (mod 2), we obtain
exactly 227 T of functions 1’, witn 22771 < 22 1e
it is considered that the number of linear functions that
denend on n: variables, 1, "2’ ceey xn 1s equal to ondl
‘ ..,‘we obtain PQ1/2 (n) < 281 & 22n -1 Thus

2.2 —1<Pq,, (u)<2““ 2:

Hence | I

| ‘“ﬂmf‘ﬁ- .
A '

' Let ns see now if 1im Q(n) =2 forq £A.
Then 0 £ & £ 1",,'. We ask ourselves, can we construct
for any number &, such that 0 < & < 1, an invariant

3
class Q such that 11m JP (n) 29 2 If there is an
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affirmative answer to this queqtion, it is desirahle to

D ase _tain the cardinali Y of the set of all the in eriant
laésee correqund*ng to one- ana the same value 5'. The

remaLning portion of Lhie section is devoted tc the

. solu tion of these problems. anore e answer tbese
\

questionn, we shal'! ccnstruct a special family 185: s
Lt"a O

f“
ef/invariant classes S<' symmetrical functiona.J

A .
-L:et S(Xl, esey Xn,“yn .-., y1 ) be an arbitlary

symmetrical function and x, xz,:..., xnbbe all its

essential variables. Llet us make up of these functions )

a cortege of n + l-numbers X’(n) = ('36,,}f1, censy Z;n)

.where . '
v I 0. "UL S(i VL YL ) =0

B - “"“0 t -.'n) f
1 S, 0y, w—: e

It is easy to see that the co”tege j/(n) - \) S

. G "“‘emé v ’
datermlnes fully a- cellection o; working numbers /10/, and

at the same time the funcnion 1tse1f* s(r ..,,<xn, yl,
vesy yk). We shall therefore frem now ‘on indicate some-
times in the symbol of a symmetrical function in the
form of an index that-éoftéée;?which defines theAgiven

function, namely: L - L
S(z,. e Z,,,. yl’ ...; yk)'s—‘gfoy,,_,’fﬂ(zp LR ] xn‘ ylV AR | yn)’“
""Si‘(n) (.. S Yo oY) o

2 Accurate “to the deeignation of the variable
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“Let 845 be a_certainuinveriant‘class of_symmetricalvfunc-
tions 8 (i )(xl, cens Ko Yy eeny Yk)o We denote bj

5 -« X(n)\- the set of all the corteges, ccrreeoono=ng
to the functions from the class Séw.

We,s all hencefo"th Coll such familie< of corteges

sets of type S;nce the class Ss~ is estep}lehed

1que1y by means of the set 1”6. ’ a study of the c;ase S¢
reduces( to. a.study of the .set 5;._ It is obvious that

net any set .of corteges can be a set of type "f- in orde1

- to clarify the - oharacteriqtic pronerty of the sets of

e t

type ‘:.4-let us. give the following cefinition.
Definition. The cortege 1{ (m) ,&D¢‘a«.¥??wﬁ)
1s: called a.segment of the cortege. }/(n) = ’y;,g,“;. Vv )

it 0 £p <p*m< n. o

Lemma 2,1, In order for a set of cortege= X(n/ to
be a set of type f‘, it is necessary and sufficieqt that
1t contain together with any cortege XKn)Aang of its
segments. Y '(a). o v;ﬂ  f | -_ o

Prcof.. In fact, le* us con51der a symmetrlcal
funetion S . ( )(x,, . ; yl, sy yk). If the con-
stants are substituted in this function, 1t goes into a

certain symmetrical function .
S (1'.,. . x‘m, y’ y se ?13’_).
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¥

where '
. ... z;m}c:{_z;. coo Zabgh {yi,* e 7% (ot ORI N &
et this function be defined by the cortege Y'(m). Let us
assuine that a given 'subst_i-tution o_fj constants converts p
essential variabléé from 5:1, ceey ‘5: . into 1, then
B (m) (oo Tpors =2 Toom)® |
Consequently, \{ (n) is a segment of the cortege \5/('1)'
The opposite is also true: 1if the cortege X'(m) is a
segment of the cortege X(n) and 8§ ‘b/( X S v (ﬁ are any
symmetrical functions defined by these corteges, then the
function SX'( ) is obtained from the function S Y(n) by
employing operations 1, 2, and 3 (see definition of the
invariant class). From this we readily extract also the
proof of the lemma. - |
Thus, T P together with any cortege contains all

its segmentso o " |

' We shall now study the stv-ucture of the corteges
D/(n) = Y“B(» ? e ‘iY*n)

For this purpose we introduce a series of numerieal
characteristies. Let us gssign to each segment X(m) =

= (‘{? \(\"‘H’ L 5{"}"‘ ) of cortege X(n)- a number

\‘{ (m), defined by the formula
VP tpt+tpeat ot Tpom
m+1

o (m) =

and called its characteristic.
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Obviously, the eharacteristic }(p(m) represents the
average density of distribution of the numbers 1 in the
segment Y' (m). In particular, 1) (n) is the average
density of distribution of the numbers 1l in the initial
cortege - g(n). let i‘urthemore

&otg- min ‘p (.) ? MI

- #Sga—u "(")

_ o-.s’s n
(here the. minimum. and the maximm are tazken .over all the

segments:. of m ¢ 1 numbers), wathen--obt-ain two corteges
) - (k"}k-" ny )h"'f ) a.nd;}'v-(}u..,}}&,_, t\‘,[/--n._[.’)
such that

1-.1< ")‘hﬂ(""o iv “eer “)#!"Ms"!‘-ﬂ"’o(n)

We shall call these corteges respectively tne)\ and /uv

ccrteges. s
Exa:hples. DT ie )
ﬂ 1-& 0,0,1,1, 1; Am. A=(0, 0, 0, ¥, ¥, %)

pwu(l, 1, 1, ¥, ¥ ¥
:!’) ?-{0.0 1, 0, 1, 1. TJm 2m(0, 0, ¥, Y, */.. 3 !

R P s
e Ty osgn
ST 00D Thoy sk A
. It 1s easy to see that )1 andlu. -corteges- charac-
terize the structure of the cortege, i.e., the distribu~
. tion of the zeros and unifs.in the cortegéQ
-let € be an arbitrary real number such that

of
O~<..6~$ 1. Wédenoteby-—',%,... = and

"v\.




e T D

| - | .
._@__: _;_"‘-‘ Lo (‘.‘L its best approximation with shortage

T

- ‘and ‘with ‘excess . .among ‘the fractions ‘having denominators

respectively 1, 2, ¢sey my o4 Theén

..om >~ m

Let us_ prove one auxiliary proposition, concé:f;zing “the:

best approximations of 'g given type.

»

13 2]

-~ : . - 7 ¥
. ; 1
approximations with excess for,a..real number: & s Where

o £§ & 1, ‘then. ' S
3 <§m1 *pm'!"f
i.'e,v, the numerators. G‘: *1:’“';, - ?.?m,,,_ do not decrease
monotonically. '. _

Proof. From (*) we have

Brns BM Bm—1
m-‘-‘l >°> > m1

Henge %‘mgl - (L m " lor \,""Hﬂl 2 f} n® On the other
hand, it follows from (*) that.

8 B | - |
B _ : ;-?ﬁ_ “m ‘<—',' T e
Let ue put (“m-&l = \5m 3' . Let us show that £ S: 1.

" We distinguish two cases: , “

1) ’l = m. It then follous from \”“’“ (1 that
g o gy S
(Jm-'--o{/\}'<m+lor VoL aly

2) Tm ‘& m. Let us-assume /V > 2. Then

m+l »m »m(m+!) '

' m(m+n ™
nce m - p > 0, iy m = @m 21).
The last equation contradiets (**), Therefore
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fecr C

e - - . N . .
¥
A~ & 1, h*s proves *he *emma comnletely._

o
R o

,quo;lary., Ir & < l and Mgy ig such *that ﬁﬁ < m Nes
then for m > m, we have .
.Bm <m.

;
L /

pwaetAus;put:ﬂJ = \n). _It .is obvious that the

$oote
b

itisl certege ; (n} CaﬁFC+ have a unzfﬁr ~average density,

..Q
ot

zal to ¢ ovsr all the Qegv-en‘.s, 1f C:<f 1, In fact,

/\ &

45/ 1l one can alw;ys fina euck m <C,n,‘that

. e} < s 4
Tt (5 < ’L s 1e€ay & canno*-: he represented
ekl Co ey 7 ST T LT

-in xthe form of . fraction w;-b a dencminator ecual to n ¢ 1.

Therefore the average density 'yb(m;~;h & for “wvalue

»

of pe. Thus, with the exception of two trivial cases, the

distribution of un:ts in the cortege 515} can not be

ideally'uniform. ,To be sure, *ne aversge density ,fp(m)
~cen approach the number Cf, ns VFTY when }$(m) = St
\ b T
or p( m) = LJii% e In his.conﬁaction it iz natnural
s . _ ‘

tc define further the ccncert of uniform cisurib 2tion,
in the followi ng manner.

Definition. A corteue J/kr' with characteristic
v (n} =£§' is called uniform i* |
Smer ¢y (m) Bt

mi1 Sm41
for any m (m = 0y 1, see, n) and p (p 2.0y 1, seey n = ™),
_ s Ly Uy sees
where i and EM*] are the best approximations

b ok
with numerator m + 1 of the number g on the low and on

the high side.




- It is easy to see that the cortege Y (0, 1, o, 1,
O 1) is uniform. Consequently, uniform cor'ce,ges do

exist, It 1s seen from this also that the concept of

uniformity introduced here corresponds to our intuitive

concept of uniformity. However, the difinition becomes
compTetely_'_meahihgful if we succeed in showing fhat wniform
corteges‘exists for any characteristic ))'oz(hl).‘

Lemma 2.3, For ény rational numbér l/q, ‘where

f/q < 1 (the niumbers fand q need not necessarily
»W‘%f //MM%), it is possible to construct a uniform
cortege X(n) = (YO’ Y10 oo ( ) with the characterisu..g

v (n) i/c.

Proof. let us put n = q =oeand let (f b fg_f__{
be the approximations of the number f/q on the Sugh aicte.,
becu among the fractions with denominators 1, 2, se0g N # 1
reqnectively. Obvicusly ﬂ"’“’ £ (since n ¢ me= q). Let
us show that the requirehe:;s’ of ?he 1efmz?'\ are satisfied
by the cortege ' |

FO)= (for T -+ o)
where T

f Yo =By _ .
\ Ym"ﬂmﬂ—pm (m-‘i 2, ... m).

From the precedlng lemma 1t follows that A is equal eithe:

to O or to 1.

3k




Obviously, for each initial segment (A/O, b’ y .o

"1 veermd
Tt
"o(ll) _O_E;t_____m (m=0.1,... . . .

Let us assume tha‘c for a certain m there is 2 segment

0

(Xp Xpﬂ’ e Y ‘lo) suen that
- : a..,., Tottpat o+ Ypemg. - Bmgar
_ p("o)>m+i’r o 12 mm.-H Lkl 2N m':’:‘

Then Kp-imoél €p > ﬁmoil’ 1. e.,@\‘ﬂ" +17 ﬂm,fs+l
From this *we ‘have, taking into consideration that p #% O

pﬁ'ﬂ.“ ﬂﬂtm’ol . i
Pt >p+-.+i'*p+ma+t >"“"( 2 ... )+

, +r+m+i> +r+'u.+1

Aﬂ--r,,‘H‘l

At the. same time, since __..E...’f...__.. is the best
. . s - ) : ’mg +I ’ ) .
approximation of the number 1/q on the high sid‘e,'am{ong the
fractions with denpi!fnator_s P em, 41
Bpomger:: 1 1
FFmE S TREERT
We have arrived at a contradiction. Therefore always .

¥ ’lp'(m)-"%g““ ¥ w.(»:)---ﬁ":;_‘:i

Consequently, , |
| - Pﬂol‘;‘:x | ’(m)“%ﬁ.
Let us examine the numbers
tm B —Brorm (m=1, 2 ..., .
! F‘:m"’" Barae.

We snall show that the fraction cl'/m are the best

pproximations of the number f/q, on the low side, among

the fraetions with denominator eqgual to m, i.e.y we shall
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Show that

_‘9_
u

ilr;

Ifm=n4¢ 1, the statemen’c is triv1al, since

| .+‘ .EN.-:——., ‘
! _ Let now m ' <ne 1. First we shall establish that
y: £ “% . TInasmuch as o
3 &:;.:;&.-zzi.!ua' it buim g G D
' "‘!ﬁ"‘ i) w‘i'-r%ﬁ‘:;'.‘ <-+t--
then o ; 1 .
o N ;;<?;- _/9_. e
More accurately, ——— <—’£— it =& < ," L and
| I S S I A
Xm _ ._Z_ 1f »6 , 6’n+i~%
m ¢ | MmFT =, | ‘
In order %o show that o« B —P(tn ;. it remains to
=
establish that o
‘el ol 4
R I

Assume that this is not so. 'Then

op 11
1.0 T
[ ] .’
5”0 "‘Bno ~m+i
I '. 1 <"+‘

Hence . U O
a ("+1.“"*)?;.:-‘("+1)?..m_+n+i<0.'

Dividing each term by (n ¢ 1)(n# 1 - m), we obtain

a4 a+l-—m n+1 ad ad ';..'.

‘05"? %‘
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The latter contradicts the fact that _é‘ﬁ_ﬂ:i”.is the best
: N l=m

np:'o'ximat* on cf the number ,{/q with excess amont the :
fractions with denominstor n + 1 - m.

We have thus established that

. /
~  We shall now show that °i’: = e .

‘ bl
v (m) 3 =2t ,:”_;:;

For the end Segment of the form (Xn m, seey Yn), we have

(M) tTh-mt .. +1n 31“]‘5'-—"(__ Bymay
Vn-m m+1 - m-p-t m4t

Le* us now establish that for any m and for any n(o
Ln-m

\p

‘nlo\
(M) > 25

If this statement is not true, then there exists an my an.
a certain n'umbef po(po < n - mo) such that

"‘o"" s Yfa+‘ . ‘+7N¢ﬂ. Fmg+i
yp.(mc)<m +‘. & €. e | - ot 1

Inasmuch as

.{P‘ +...+ Y?oﬁm. = @7047’\0"' - p’o = (37"" - ph) - (p“‘ - p"*“.ﬂ‘ =
= Qneimpg ™ Inopgomy:

then v 1""“‘P';—an°?o—"l‘ < %“. % e ﬁ,“,._.r‘zg °n—p.-m. +l-. - .
Apet -Po Qn-pa—mo‘i' Qm.y ' ]
Hence TP SR pet me T a1 AT T—p <
’ . . / a..'?"‘mg “m,n 1 t ‘
O ey et 1 )™ T T <7~ TR
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(7(/‘ 4 ;
At the same time, since ;f £ ic the test
(\)’ 4 :

avprovimation of the number i/q on the 1ow side among -

fractions with a denominater n # 1 = Po?

. aR*].upo 1 * i

nti—p,” ¢ “Ax i pt

We have arrived st 2z c~ntradiction. Therefore

P(m)3 ¢m.1 A’MW u~m (”') == m." .

r’
then for eny m
. ) . Zin.y
Mot =o<?slv?~m" (m) = m-1-
Conseguently,
Smaey 3 +1 L1 e
m+1\vp(m)< I (m =0, 3, ..., ‘-u—k.l‘ p=1 ..., n—m

This proves thes lemma completely.

Note. We have established simultzneously that

1y

‘a
Ma= A pp=

: 75
We have thus shown that for any rational number,ﬁ?q it is
poesible to construct a unifcrm cortege with a character-

l'
istic Y/q. The question of the number of such corteges,

having & ;ength ne=gq -1, we shall leave aside., Let us
give an example based on the constructicn of uniforn
corteges:

Example. It is required to construct a wniferm

cortege for the number 10/13 (n = 12), ILet us write oul

38




:the best approximations on the high side of the number
10/13, having the respective denominators 1, 2, eoey 133

2"5;3"Bc49s ‘&5%.‘;

o- "

The sought cortege has the form (uuouwmo)

... Let 6 be an arbitrary real number such that
0 £&6 & 1 and

iyf(_?;:.'..\] ﬁ,n" 6! ﬁz [N _@E_“=\
| 2,’ e . )—--'-—'.:-3:-} 7

its best aporoximationf? on the low side and on the high
side, among all the fractions with the denominators egqual
*‘e%pectively to 1, 2, aveyg Ng oee Then
-—<.os-$2; end F,,-—c,,‘l n=1t 2,...)

The set of all the uniform cor’ceges with
B, font)

characteristics = Ayt fn+1)and Yo(n) =
(n = 0y 1y oee) ang al'l “the segments of these corteges,
by virtue of lémma 2,1 is a set of type I We denote

it by Mg , and the corresponding invariant class of
symmetrical functions will be denoted by S 4~

Lemma 2.4, If a cortege 2/ (m) '(b/P’{P*’) e y}b,m)g; |

then
s — m+i <v,(m)<c+m+‘
Prooﬁ‘.' By d inition this. cor ege is a segment of
a certain cortege -(‘go, 5’.,..- s¥n) € s ) with
p =2 0 and m. < n. is ‘the characteristic of the

cortege X(n) and satisfies the inequality

,,,_..__.F- PER R vy ,‘+g

ingsmuch as

R

Let °(m+! / ) and ,,,f-;/(m-!-l Ydenote the best annroximations
of the numberso(,,”/ n+t) and B, .. /(n+1) Tespectively on
the low and on the high’ side among all the fractions with
denominator m + l. T"ien A
. mel  Spel |

AT > wl T mET
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and : -
’ o l a;:’" < Bu.y -1 o
miT S apr vy

Consequently S - o

.;t” .»Cn.i ' ’. i ) a’
mat > Al mAd >e- af1  m+ii 2= mTl
and I 3 1 1 1 2
m.-1 fnel
- aad <arttmFr<*tagmtam<ot=E

Since by virtue of -the uniformity of the cortege y(n)
we have . ‘ ,

i Bt
m+' <vp("‘.)< n+, L

then

2 2
e‘------—-—-m_*_1 < v,(@)<c+—-” .

+

‘This proves the lemma completely.
Lemma 2.5, I, ==|. if & #(f. .,
€4 {a« S

. Proof. let & =£ 6, . To be specific, we put

€ < €. ‘We choose m, such that
. 2 -2
B == g —ea §

Assume that there exists a cortege 3’-(%):(2(‘9; YP*" v, {J,.,,,j
with m = m which belong simultanecusly’ to ‘the sets.;’ :

ig; and [y ~. Then, using the preceding lemma, we
‘obtain - : 5 ; ¥

ma1

) .2
S <"p(’")<‘|+m
and . 4 ,
°2—;5}-—f < "(m)<°’+72:}-_f'

Since m > m_, these inequalities are incompatible with
the initial efuation. Consequently, the cortege \i'(m) :
(m_ > mg) cannot belong simultaneously to the two sete

k and~ [, . From this we obtain the required results
directly, namely ' - S

. F.I‘%'Al_"., ,w'gwb o "s |

- Ly —




- At the Saiie time we ‘established the following stronger
facts  the sets. ['s; and [ can have as common only a

finite number of corteges -- corteges with length not

exceeding‘mo._ - '

i £l
- Corollary. .The family{r' ;} has a cardinality %.
 As already noted, each sét [y defines simulta-
neeusly an invariant class S ' of symmeteric. functions.
iWe therefore obtain from the lemma Just proved the
following: '

Gorol'l.ary.: The :t‘amily{ S;} __has a cardinality %

Let us prove still another suxliliary statement
concerning the functions of the clagses Sg . let
6 < 1. 6n the basis of lemma 2.4 there exists such a
‘number No = Ny(& ), that when m -> N, for any segment

¥m) € Mg hlm) < 1, L.e., the cortege ¥ '(m)
canriot cons s{:' £ ‘unitigs’_ only.

Lemma 2.6, Let.S(“xl, cess Xps Yy seeo yk) be a

symmetrical function from the class Sg ( 6 & 1), which
depends essentially on the variables X1 Xp3 seey Ko
" Then .the function S' obtained from S by substitution of
constants instead of & esséntial variables (& £ n) and
4instead of certain unessential variables, is a symmetrie.
- eal funetion, whereas if n - @ > Ny, this function
either vanishes identically, or‘depegés essentially on
n - d variables, ' ' o -

Proof. The symmetry of.;.-function of S' is obvious.
~Let- n-34 > NO. If at least on of the n - d varia-

< inog £ n) which remain unrepléced by constants

is such that the function S? depends on it in a non-
essential manner, then by virtue of the symmetry it
depends in a nonessential manner on all the varliables

_of this group. Therefore, the .only functions which
contailn only%nonessential_variables, are constants,
and in this case’ we have either the constant 0 or the
constant 1o - - 7 - : . -




: ; the . same time the | functlons 8! correspond to ﬁ[.f
~‘the cortege Y '(n=d) ot’the set 'y .  Since. n-dE_:a-N R e
the characteristic x/ (n-d) .of’ the cortege X'(n-d) 0

sa tisfies the inequality J (n-d) <: 1. “Thé latter

'51gnifies ‘that S yaé 1. Consequently, ‘when n-d > Ngs
either the function S' dePends essentially on the
ivaria‘nles xil, xiz, cosy xi _or else "1s the constant O,

This nroves the lemma.,

Let us now construet a family of c1asses Qes—(0
< 57 1), starting out with classe8, Sy . lLet, as
before Nb = Nof éﬂ, where, c{’<: 1 denoteiﬁach a number,

that- when n :> NO we have
ﬂb(’t)<L l

We denote, furthermore, by’ ﬁgv//he invariant class con=-
sisting of .all the functions which depend essentially on -
not more than N0 variables, and by Q' . the class of all
the funC'tionS f(xl, seey X ' Zl, .oo, Zm) of the

: form =

: ‘ fe. ..., x,. z,, 2, = ,
’.‘&S(i‘-:' ciis Ts Yy e y.)f(r” 2 e by h

-where S is an arbitrary function from the clase S }’
eeey xn‘—-‘are all essential Variables of the funccion CH

£' -~ arbitrary function of algebraic 1ogic such that
its essentilal Zariables‘xil, seey Xi, are. contained among

the variables Xl, csey xn’ i.e;, v
. {zi‘7 Lo ‘;'Iir}(:{_‘tp‘--- . -txn};f'

. ) . - ¥ .

the set of inessential variablés {zl,‘”..'., zm}‘ of the

_ function f js the joining''of the “sets of inessential

- -variables _Yl’ "".yk~} aad_ { ul’»?ff?_&g;} y lees
{z,, Ry zm}_s-{y',‘,' e y,,} U {u,, ey %'}_a- .

Let us put flnally o o

Q: U P 0<»<1
0'={p ,44)—&4«_/ o=1.




) Thecrem 2.5, The classes Q are invariant and
~ :
« ,/ = Q{’;\/ if .

: | .
Proof. Let us show first that the cla
invariant.. The statement is guite cbvious if

Let-now T é an.nd Qg 4’, Pz. Two cases are possibles

T

3) £ £ PO, Then any function which is obtazined
from £ by applying operations 1, 2, or 3 (see definition
of invariant class) belongs tg this class by virtue of
F -
L

he invariance of. the. class PQSk :
by £ £ Q', and f £ PO, In this case
j(z,. N R TURERY zm)=
=S -y Ze Upo on s IO (T oo T e s AR

with n > NO.' Let us verify that upon the substitution
of the constants (3rd operation) Wwe obtain a function
from Q€ In fact, let us insert d constants instead of

d essential variables and a certain number of constanis
instead of the nonessential variables. fThen if n-d £ Ny
“he functicn obtained belongs to class P*C, but if

ned > NO, then on the basis of the preceding lemma 1t
is either a constant O (and therefore again belongs to

- N .. .
clace F O), or depends essentially on all the remaining
' n-d variables from among the variablés'xl, eesy X, and

o
<

then it has for it the same representaticn as for 1

e

initial function, since it belongs to the class Q-
Verification of conditions 1 and 2 (see definition of

the invariant cléss) ies obvious., We have thus gatablish-
ed that the class Q is invarient.

Let us show now that Qg 4 Qe if
2’ .

H

7

L




e i et ey

6’1 = 0/2 (0 £ 29/, ) 6;5 1). To be specific, we put

574 &1, Ve consider the sets F/} and Po/ « On the
z

besis of lerma 2.4 we have the following estimates

B gk ’W

fﬁ .{,(n)e[',‘f g, — n+x<\'0(”) < +,:_l

{W ' il (an o 6g ~ ,m < o(") <+ n+l

am—

i)

#!

-

:ssume that n is chosen such_ that
2 | 2 ”
_ : .(5“ @ n> x)N‘

When the symmetrical function S ¥(n) ¢ QJ and
- 4 po

S yla) & Qg),since in the opvosite case
| s"(‘)(xl’ ey z” z,_’ s e ey ")_

=S?‘(.)(zv cerr Ty yl’ M 4 yl)&,'(zig' ";' zi;' él’ feey uﬂ)»

-
which is impossible, since the average density Yé(n) of
the cortege Y(‘)' (n) is greater than the average density
Vé(n) of the cortege Y' (n). This proves the theorem i
completely, | '
Let 0 £ {.é 1 and X(n) = (}{O, ch’ ceen )
be an arbiirary cortege from ﬂg » Let us ccnsider the
S um ‘
' 5(1("))"‘{. 2 NG+ . 1O
It is easily seen th a’c this sum characterizes the number

of aggregates in which the symmetrical function

Sym(zy Zp - - s zn)

"'."m*"""




turns into unif’y: ERRER
We shall study the asymptotic behavior of the
qué:ritity f{g("‘)) as n --»oe . For this purpose we
| éuse the local and integral limit -theorems of Laplace 722/,
let us recall the formulation of these theorens.
Let Pn'(k) = Ck'pkqn k, vhere p + q-= 1 and 0 < p,
q <1. Let us make the following transformation on the
graph of the function Pn."(vlé):‘vl‘l) we shilf‘c the graph to
the left by an amount np, 2) we contract the x axis by
npq times, and 3) we stretch the axis’ y by \/_x_ﬁ:—;
times’. Obviously, under this_v-trénsformation a point
Wlth'éb'SCj.SS& .k will go into a point with abseissa
<n) ._..‘:."‘_L. . 'As to the value of the function at

'n
’chis point 1‘: will be

Vnpg P, (k)= Vapg P (np+ 2 Vn Pq)-
"Local Limif& Theorem. If 0 < p, q < 1, then

1} npq P_ (np ‘ x(n)’\/ npq) ¢ --- exp (= (n)/ )—an 1

. uniformly over x(n) y @S’ n __..a,ac -« We denote by

Pn(a, b) the sumf ~

W Pa(k)
wpte Ve <A Lapt+bd Vg
In’c'e'gré'l Limit  Theorem. I 0. p,? Z 1,

a <b, then 85 N ——dD

-— W5




' (" ‘ l
’l ’b '—L- "z »'
g Fan

~ We now formulate and prove a lemma that character-
‘izes the asymptotic behavior of the quantity 9”Y‘r1%)).}
| - Lemma s _..!L(_‘L-—-bc(n—tw). :L_f 1(5)(1‘.

Proof. Let us estimate the quantity

2"‘5(1(-))-1. ( )( )-H,C‘( )( )"‘"
() (*)

If we put p=q = 1/2 we obtain

r”@(v(u))=1. ,(0)+1, ,.<t)+ +r.P.(u) 21.1’,(&)

This expression can bo ‘considered as an 1ntegra1 sum,
corresponding to the shaded port*on of the step-like
vfigure of Fig. 1 (the drawing uas made for n = 8 and
‘((8) (110101010)). Let us : .numbe;-._i_n Fig. 1 the
~rectangles from left to right by numbers from Y to . ne.
The rectangle numbered K (adjacent to the segment

Cx, x s 1] ) is shades if and only if )\ = 1. In
this ‘case the quantlty :Ei x' (k) represents the
area of‘the shaded figure. For what is to come we have
to proceed to Fig. 2, which 1is obtained from Fig. 1 by
the same transformations as mentioned in the formulation

of the limit theorem. Since here p = 1/2, the shift

46
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-is made by .an amount np = n/2 and the x axis is compressed
by 4 npq = A/ n/2 times; the y axis is stretched by 4/ n/2
timeé..
4s a resulf of these transformations; the area of
the image of the stepped figzire (Fig. 2) equals the aréa
of the initial stepped figure (Fig. 1), On Fig. 2, in
acco*.;'dance with the given representation, there arises a
naturai numbering of the rectangles, namely by numbers
from 0 to n from left t_o_ r’:’l:ght. Assuine we have a certain
segment (piece) of the x axis. We denote by p and p+4n
respectively the numbers of the farthest left and farthest
righ‘ﬁ rectangles, the bases of which belong to the
- segment., We icdmathe given piece with the segment
‘{' (m) = ( (F’.YP’”’ . )(F+"> of the initial cortege
X(n). )
Let ‘'us now explain the idea used to prove the
lemma. By virtue of the limit theorems, at sufficiently
"large values of n, the graph shown 1n Flg. 2 becomes
close to the graph of the function y =(exp{ k/‘_»/r“
in the ares corresponding to the stepped figure, deter-
; ined 12 the segment [a, bj: beconmes clesé to
:i;r i\“ d# However, we are interested not in the
entire area of the stepped figure, but only in the area
of its shaded part, determined by the cortege /(n).

From the fact that in the cortege ? (n) the fraction of




L
3 4.2
<)
B ¢ G
O
o i
[ @] o’
. G
s B
i
e
(O
£ 1
s | iz
n, ow
o ]
Gy )
i O
{ 32
2. .
Luond
@ 3
N Ry
LA}
- -
o 4
£1 3
i £y
42 A3
< :
Q. o
wcf
i)
X0 U
o wi
R

W
i
w0
o

&
ot
3
£

g

(D

LIS

on e

n

i

£

w3
Qi

w

('

shzad

<
A

ber ¢

AL

[
L

nRg n

eces

e given pi

T

o %

H

+
8

)

.
nIrs

Y
[ed
Li

ction of the =

e Co

irtue of t

3 .z_.
EEn

Ly ob

il

-

grge n We can resad

-
i
—.

angd




ey




also ‘the final results - . ' _
Let us proceed to carry out ‘che proof itself.
1, We take a <'. b such that

y ¢ F L T %
2 L z £
._,V?"*_S.-: dz+',§;.;§e. dz2< 3.
2. ‘Let »Ml be such ’chat when n > Ml
. .
men-gg il
a- .
3. Let M, be such that when n > M2
, 'zﬂ"
P o) Vn CH
<?+ V- I<8(b—-a)

4, We take M3 such. that My zZ 16/E Since the

_characteristic of the cortege )/' (m) "(b/ ; YP“’-“ )/+n )é

satisfies the relation o

{ + —
we have uhen m > M3:
o= <Vpm) <ot ,

5. Let us consider the subdivision A = ja = a,,
8yy eeey 8p = b } _of the segment [‘a;, b_] . Let 07> 0
be ‘vs.uf:h:_t-h_at at maximum l.ai - ‘ai'-li <&

e o s N .
7 ) T @ =a) T < g, e e SE<
@ it : A

6. Since the ¥ avis was. contracted' by a factor
) VT/2, then for any subdivision A of the segment [ z, bj
49




there exists such a number M %) that when n :>’ ¥, the
number of pcints with abscissas x(n) in ‘each segment
['al 1; 8 :] is greater than M3

7. Let M be such that (r + 1)\;".;: < --;;;-_ when
n >> MS' ' ,

— Let us now specify £, 1 > E, = 0. We choose
the numbers-a and b in accordance with 1tem 1. We find
Ml and My, as indicated in 1tems 2--3. We take the
subdivision A with max lai - 31-1‘ < & ‘where § 16
chosen in a'ccordénbe with £&. We choose M3-, M,_‘_',' and M'5
in accordance with items 4, 6, and 7o

We put M= max(Ml, My, MB’ My, MS) Let n > M,
Consider the eypression
s""” roPn(O)ﬂ. WD+ +1,. (n)-z ul'.ti)

Let us break up the sum into two parts

2 Yan (k) =

por §+.%;<
‘Hence _— :
0<EGB_ B whib= .,
%ug<.'k<%+bﬁ o
= 3 whin<s I h@e=i-Red
LI o
~>'—;—+~§ k23552
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Consequently | L
o< T whm<y (1)
’ §ﬂ€3<l<;¥by—;—;

Let us transform the sum in the last inequality
3 _wme- 3 x.,-c"» (3+1)-
Pty cFo

'_2 S (.....»(54,,;.-»“‘ )

. ) ‘S’.‘i—l". <“
Using item 3 we obtain =
-

‘-_;.P"(‘i‘*'z#.f)”y’ﬁ +"“"' M‘ﬂ\v—— ‘Ml<§'{;ﬁ:‘,‘;-@

'I.n'seffing” tl'ii;s‘ eibr'eS'sion .into,.'-.'-the preceding sﬁm, we get:

2 2 7*r(ﬁ';('z+’“wr -
2 f¢
-5 3 7—:(7{:‘ )=
“‘"t ye S <
2 e 2
- (Y + 2 E I Va
, hz.“&— "l <s; V— La‘»:““""l v

‘,~_51 B




or
. 2
.' ' - WPy (k) = 3 b2 Yo 7%—"!|,'7—l<
s+-!%<~<;*»-'-;i e sk T

- <Z 2 [ ] < % _e
= QV‘ .§¢ sz o SEav=T8

(2)

_(n)

and x *espectlvely the largest and

We dencte by x(n)

the smallest values of the quantlty ix(n) ; on the sub-

interval ['ai 15 a.;) (Flg. 3
Taking items % and 6 into account, we get

cm’ 5lim’
2 e 2 _, 2 2.
2 wEvE <Tm 2 wES
LIRS 22“( pat %1 € :;‘m <s;
(m’
(o) et
SR }/. ‘ 'z 2
ana . .
_*'h”i _;(im’
2 ¢ 2 e 2 ' 2
. > =
2 wETE e 2, v
8 S X <a; a,_“:h <a‘

:z"”

[ 2 e :
><c—-8—)( —a;_,— V—> Vo
where the + 2/ n 1s added because of the interval
'located between . ai 1 and the farthest from among the
. points xlgn) to the left, and also between a, and the




farthest from the points.X§n) %o the right, belonging to

Eai_j_lj, a; ) (see Fig. 3).

s%z N
: ) P ’(")al ‘

Ty 3

From this, and also taking items 5 and 7.into

{n
. B %

¢ §
Pt

& {‘ a: )E_:E:+. (r4,1
<(‘+-§j<:‘(at, i1 m .V'

account, we obtain

(m’-
n

Y
\\ z Yh‘/— ‘/___ } ;<

<af® <a;

<(°+a)(v—-3°”z+' <(a+)(+5) <R (3,)

n—-i‘ .
-

. and : _ ' L

. ' »"" ;‘;_"'

: b k 2 — (o= %) (@, —a;_ ) -
E‘ 0 ::f’ <e, Ve V. V ( 8/ <I=l YV

- 0> (=)o b Eee3)> -
(3,\ : ‘;"‘_ .

><a——-)<1_3‘)> "’%‘.

|\ .

Combining (2}, (31), and (32);iwe get

3
3 3 '{ng(")-—c‘<‘;-
-:-+¢ &<R<z-}lv—
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From this inequality and from (1) it follows directly
that when n> M |
This proves the 1egzj.ma completely.

Us;ng approximately similar arguments as in the
iemma,’“iae can readily obtain & ger Leralization of the
integral limit theoren. Fbr its fomulation it is
necessary to intrdduce another designation, namely: let

Cupltlm)= z 1P, (n).

Theorem 2.9, If a < b and X‘(n) & 15,

then as n—a o>
Savild S
VE?
Since this theorem will be .0f no use to us
. further, we shall leave its proof aside.
~ Theorem 2.'10. For any (¢ & & £ 1) ve can
" construet an invariant set Q such that‘“
lim V)=

Let us take fér Q the class Qg which we have
constructed, i.e., Q = Qg+ If & = 1, the theorem is
obvicus. If "<,1’ we have by definition (see p. 97
/of scurce/)

Qe Qs P

and

- OH




Qim (S (@ir oo Tas B IES @irses s iy e, u))y
with o

Szy .0 20, y).,. ey Yp) =Sy (@ s TR Yy e Yp) B
where X(k) € Pé- and the essential variable functions

s and f" are related by {7.;‘,..; X,‘r}C {_1,;--‘;. Ay o
Let o I

‘f(z,, N R TR ,sn)n v
‘S(x'. RN R TR ,y,)&['(z‘,. ceny Tips By oeny ").

Cbviously, 1if e put n = m ¢ k, then

Py (m) & P, (n) < Pg (m)+ P ny(n).|

Let us estimate the numbers ;é@é(n) and P/N(n). For the

. \/.. ) f
first of these we fcund earlier (example 3 of p. 25 /of

source/) the estimate

Pomygclon™ .

The procedure for the estimate of Bf}(n) is very much the
s e

seme as that for the estimate of Pp (n) (see example
on p. 88 /of source/). We shall fix the function
S(xl, crey Xy Yyo seey yp) and vary the function f°,
observing only one limitation imposed on its essential
variables ‘

{Zigo -« 'zg,}c;{z,, N A :
Considering the functicn f, where f = S & £'y, as a

function of the varlables Xy eses X we see that always

- _-..‘_.__-ﬁ




T = 0, vhen S = O, Coassquently, the function €' is

determined fully by indicating the subset of zll the
ine
NETE R8s o~y 2

R H 2 ; 3 PRy ' x
dme ol ey ol b y on which S(x) =z 1, -
ku- - S i
2 ;o ' . oSSemplES ~
and (s} = O. Since the number of - TR o0 on
which $(X ) = 1 is '

- T +H00+ - +nCh=&(1 k),

i, 7 + . - P D e e ] 2 e
vnere y/(xj ie the cortege defining the symmeiricsl

v
I jo £ Y P IO, ) 3 4 ] 5
“enetion S, then the number of subsets of interest to us

NP N : .

7(";3'\

. - E i} oDy .. 0] S .3 ~ 3
is 2 o Thus, for sny funetion S, which depends
essentially on ¥ varial ¥

triis it follows, in particular, that
PG; (n) > 2&(1(:.».

Further, the chcice of the function 8§ is determined, firsst

=

ef.all, by the separation of the subset of essential

variables from among the wvariables Xys veey X and,
: € : )
secondly, by the fixstion of a certain symmetrical func-

tion of the given variables and characterized by a

& )
(vnlk‘b!.

such functions. Then the number of functions f, which

14

anetions that de-

are oblainad from the symmetricel

vend essentizlly on k variables, does not exceed

W« + =
Cn 24t T may 2S0108)
kY




(where the mavimum is taken oVer all the corteges from
st fizxed k). .
We obtain
' | C Pg;(n) < "2 CR oMt gy 280Gy
h=0 ¥

Thus, -

2% G Py, ()< CR2M 4 D) CEH max 25009,
| S ez max 2500

Let £ > 0 be an arbitrary small mln‘nbef, and then
abccrdlng te tne precedlng lemma there exists such M,
+hat *wherv k 7 M anﬁ b/(k) ¢ F{

R emg< 6(1(1-))<2"(c~*-¢)
We have N

. » .
ZC +| m‘x 25(\'(.” - 2 c‘ +‘ mxze(.““));{;; 2 C:zk+‘ max 26”‘“) <.
’ k4
h::.u-l'l

<max 2“ i \" ("‘2"+ o 2('+')'”‘ 2 crig
°$L.M .=0 =0 . N _
<(M+ 1) nM 2N+t mex 2800 4 2. 3% 2"*" .
4 oilSM R

Thus,
z'(.c-e)z'<Po' (n)<cg.2'N0+(M+ i)nhlz.\l-ﬂ max 25(1(&))+2 . 3. 2(0“)2‘_
’ 0-3hS M ’

From thls it follows that

°"'<hm ﬁo—ﬁ)<2'*' .

In view of the arbitrarineSs'of'é—, we finally get

= 57 =




22:2:1 Pq, (n) = 2'. ;

This proves the theorem. .
- Theorem 2,11, For each{O = s £ 1) there
exists a. continmzm of pairwise different invariant

classes Q(witn 1im /\fP o< (n) 6’ |

" gt

The correctness of th*s ‘checrem =0 follows
from the proof of theorem 2,3 and example 6 on p. 87 /of
source/, | |

Let Rg. be the subset of all the real numbers from
the interval (0, 1), vhich . are. sepatated from the number
by a rational distance. We can show that fhe subsets
Rgr and R é” corresponding to the numbers /él and § v
are either the same, or else do not intersect. -Thus,
the interval (0, 1) is broken up into a direct sum of
nonintersecthi‘n.g classes R§ of the suﬁsets R £ We
denote by R the set which has in common with eech subset
R exatly one element (different for differen’c classes
’Ef ). R is.a'setwh'ich is nbt ’x‘n'easureble in the sense
of Lebe:gue /23/ and has a continual cardinalitye

The numbers§ € R will be represented in the

.~ form of an 1nf1ni’ce binary fraction

.- eso ElrE’

'

in the presence of two possible expansions, we take the

o 58 _
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6 , &, '
2° (6 < & < 1). gf? being a sum of invariant

classes, 1is an invarlant class. .

Let us " show that the family of classes Q
where % é.R, is continual. For this it is enough to
establish that Q:}' + o8

o
—Since @0 & 1, it is possible to choose a number

when ;' - LI

' suen that
<<

0
n
[
0
jny
P
.y

o that there ewist

g

I+ follous *ro" lemna
that when n—" ?Tl thie characteristiec /(1) of eaech
cortege 5 (n) fron I} satisfiss the ineguality

) <o

et
.

Y - AR S =x --'.S.V_i'.-- ;,u

whieh partiecivate in the-ccnstruction of the classes

, &re symmetrical, specified hy the cnrtec,es ) & (n)

¢
. -2
= (L ¢ «ee 1 O) with characteristics M (n) = 2, T
Te :\ ¥ o by Nanra K i ™ }
Let N, e sacn that when n > XN, we hav — > s/
h

We take N = max(H,, N5). Then obricusly ve have when

7;.‘ (3” . oo .1.){03"

At the same time, since the subsets o(f’ end. df'
are ¢ifferent, there exists such an 1 > N that
i€apUYay  ilay(lay.

Tt iz obvious that the function f*‘-l(xl’ evey xi) will
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) 000-.*... - TRt
ODI...u,..l... 1 Xty
Ty ooy TRy, T ) Olo...a" o ! Ly,
0 0 0
0 o i H
0 { 1] :‘ f(ﬁ,......dn)
‘l T "h..“h . s s e - \ i 8 e a o
| RO | § I
\

in wnich the values f(%l, XXX Oksk, VL -, oc-,p< )
fer zny O 041, 5 5..,=<%1 =<1 con51sts of the
" :

ion of the row corresponding to the set
i &

(9%4 sevy ol ), and the columq corresponding to the
ses (°ﬁ¥+1, eees o ). The form of such a table is
L 14 .

determined by choice cf the parameter kK.

‘We shall be interested in Whau follows by certain
parts of the table columns, bexonglng to a certaln
;ggregate of rows, i.e, the intersection of columns with
& given aggregate of rows. It is easy to see that o

ezch zubstitution of the constants OL; 4 eeey

1.0
Lo

041{ .!‘1 oo 0y O<n in the Val’.ia'bles 'Xil, o0 0y }x‘ +1,

ecny Xn, where 1 \S il < i s seoe '\<ir S K,

ccrresponds to a certaln intersection of the cclumn with

a system of rows, namely the column determined by

5Sembl :
)/Okn-l’ caey G<q) with the system of all the rows




determined by sets for which xy, = ua(il, ey Xy = 411‘.
We shall say of the foregoing intersection of the

colwﬁn with the system of rows that' it ls separzated by

a substitution of constants., Obviously, the intersection
which 1s separated by means of é certain substitution of
constahts determines a function which depends on the
gemaining variables and which is obtained from f (Xyy ooy
xn) by su‘pS’c-i’cui‘.ion of the 1const'ants' dil‘?‘ evey di'x&’

31! ...,'G(n instead of the variableg igr veer ¥y

Xy g1? ***9 X . . A
Let us consider ‘the ‘set. -of assenrblies '(("(l’ cony

=4 )} from the geometric point of view it represent

the set of vertices of a unit k-dimensional tube. . The

subset of all. the vertices of the tube, for which

Xi]_ = b(i,l, eoay xir = %ir is called an 1terVa1 of

rank re It is obvious that ang,-interval of rank r is a
k= r-dimenéiqnal %afﬁ thé;-vinit-ial cube.;* Let us
prove a lemma oh the bre'akup‘ of a k-dimentional cube
into a direct! sum of intervals. .

Lemma.B l. If fl2 Tl 4 5222 T2 4 oo +5’L2 2: 2

where "k 2, r, > . > =0, then the unit

k-d.nmenalonal tube can be broken up into a éirect sum of

-

* By Weace we understant the set of all the
vertices belonging to the face. .

S"’v‘ Yo




j?j- - r,~=Gimensional faces, '~ ____ = ¢ ..

r2-direqsibnal faces, =tc., and finally - - --,“;»f 3
r.-3imensional faces,

Procf. The k-dimensional cube can be brckgg up by

£
0
Q
o
C
ot
9
=1
te
o
[o 1}
).J.
<
[
[
s
o
5]
t«h
3
ct
¢]
[\
(a7}
|._v

ionzl faces. Since

$1 1

can select from thenm f?z ri-dimensional faces. Each of
e AR=TY L L |

the 2+ - ﬁi remainirg v ~dinmensional faces can be
brcyen up {(by dichotomie & visicn).iﬁto a direct sum of
I =To v ‘
*17F2 . _gimensional faces. We obtain a total of

(@) 2= B2

r -
r,~dimensional faces. Since @12 1 Q‘? 2 e & 2 or
“ \ 2 A
42, EE& 2. f’2 172 we can select from among
Fe
T - r

rz-dimensional faces, etc. After selecting f¥§'1
{{ ,~Gimensional faces”(%—th step), we are left with
Sk R
L alpe? LT
2""'&-1..&2' e
%f -dimensional faces. Each of these can be broken
1 j_ ...'r‘t
(by dichotomic division) inte 2 T -nlmens"OPM-
- faces., We obiain a totdl of
(zk-rl_' __sz'.r'-"l_, - "’PL !)Zl’ .
ri—d”«ens;onal faces And ’*'ni is exactly equal to ?i’
therefore we can select evactlv Q'i r -d;ren51onal
faces., We have thereby constfucted the )reakup of the

equired direct sum. This nroves the lenma.

D
<
o
(4]
f-te
o
ct
vy
()
H
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Let us assume that Qé’ is an ‘arbitrary non-empty

invariant class, such that lim 4} (n) Let

R Sl
E. = 0 be an arbitrary ‘small number. Then it follows

from theorem 2,5 that there exists a number N (C{’ 5—;,

such that when n 2> N

B 27 < Po,(m) < 27,
where ' !
o< aﬁ -G <‘,_

We can now formulate and prove the lemma that ewxplains

the construction of 'a: table for functions from class Qg%

Lemma 3.2. Let Ei be an arbitrarv bositive number,
f;/’ C{/(l + éi )e Then, if the numbers s and k
satisiy the inequality

2
;‘;;<8<2'

¢ L .
the ;Y;n the table for the function‘f(xl,»xz, ceesy xh)
with narameter k (therefore k <: 115 can be broken up
into two groups, in éaCh'o§ which there is contained
evéctly s rows, with the exception perhaps of ‘one, which
contzins s' rows (0 < s'  & 's), and such that the
different intersections of columns with rows of each
group 1s not more than 2\\///

Proof. Let us conszder the expansion of the

X ,
numbers ¢ and s' = 2 - (2 /8)s in powers of - 2
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‘the Tows of each group.  For this purpose we shall '
transform somewhat the expressions for the numbers s

s‘

C)v

andc . . . :
=2'x+2’=+“',+2q"‘=‘=2q‘+... .v+2q'+27"‘+...-}-2q"‘=

) ol
=204 .. 24,

”“;: at . ', 3 A ‘, . g,
Y L NN L NS P L TR AR L L LT A

ql
=21

+... 42 45,

wnere the number t and t! re cnosen such to eetlrﬂate
9, [log, (o,09),. e Guuy < 1108, (5122))
g » [logy (3,83)], zae et <[lots (‘n‘zs)l-
It follows therefore that s £ 6, €, and s! &L &, 8.

o = 0 ~
In fact, 1f for example s > 6 €,5, then log,s,
> log (6"& s) and: consewently [log s 3 >

Z i:wva(é‘ ?.23)] The latter would denote that
Gy > L_log2(6" s)”l . We Have errived ata
contradiction and therefore, s0 < e We can
show analogously that 's' £ s E oS Each group of

s rows (or analogously of s' rows) r*onsis‘ss of smaller
grouns, and each of the smaller Crroups can be separated
by z subs ,itu+ on of enstqnts. W:L*'h‘n each swaher o j-g'-
group of 2% (or respectlvnly 2 a3 ) TOWS coq’ca"ns not -

more than P (q ) (or regpectively P (q 3 dl;ferent
_ 17

Qe Qe

columns. Theref ore the number of dif*‘eren‘c ll’lt”I‘SQCulOnS

with the rows of each group of s rows and s! rows does

— 7 -




not exceed? r_espectively

Po, @) Pa, (q,) . P, («m 2‘° i
and ' ;
mwmmmmwﬁ;

It is obvious thet if 1 an'd‘i' are such that 1 & 1 € ¢
- ' 1 T '

and + £ 1' € t', then ay Elogd( 6. izs)_] and

qj‘., Elogz(d'l Egs)_j Lherefore, by virtue of

{19g2(6§_ ies)] Z Nl (see formulation of the lemma)

Wwe obtain q, 2> N_and q!, = K . From this we have
i I N | s

1
P @) <2 m Pty <2 .

and thus we obtain

Par(a) .. Payq)Ze< BT e *"""’<;

<.2 o 51 +e) --2&;'

and . . , 0 . L, ;
"Po, (@) - - Po,(gi) o2t T AN g stV

. 5 < 2‘.( t’ +58y) < 20’0(4-}3,) - 2"..

This proves the 1emma completely.
:J.heorem 3ele For any 5(0 NS .6“ ( 1) and £>
there exists such N, that when n > N for any function

f(w ceey Xp ) from Q‘, it is p0351b1e to construct

2’
a contact network with a number of contacts not exceeding




Proo f To construe t & netwerk that reslizes the

. funetion (?', Xy9 eees X, ) & QS" we use the method
of ¢, B, Lupanov, {som euhat *Lf 1tfwith the aid of
the lemmas just proved. Thus, Tet the funetion f te

snecified in the form of a table with parameter k. e
tresk up the rows of this tshle into p groups as wsas

2one in lemma 3.2, Rach of the groups ccntaing exsc

g(f

¢ rows, with the exception perhape of the last one,
yhich containg s’(s’ <L ) fbws.' Parts of the columns
icested bestueen the rows of the i-th groﬁp sre broken
ﬁp intc classeé, in each of vhich sre contsined only
those perte of the cclumns, wnlch are identieal tc each
cther. Obviously ﬁhe number of such clazses is egqual
to the number of différent*partswof the éolumgs helong-
ing to the i-th group. Let f..(yl, xé,:...; xn) be

a function colaciding with that given on the Jj-th class

(@]

cf the i-th group andé egual to zerc c, the remzining

semhliess - Then

W
"

' o
f(zv‘?z', ""zﬂ)=¥‘ \’./fii(’l' Zyy ooar T

T RERUNE R S NN RY . FE T
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where

Mx, .oz = VER LR
{the disiuncticn 1s taken cver the assemblies (a{
vesy % 3, corresponding tC non-zero rows of the t'b

le
£ s | . £ ' - T~ L
of functions f,.) and £2°7{xy oy ey X ) = V¥ t%f;

3 s
o

....xlkz/\tne 0153urct‘ob is taxen over the assemblies
Giﬁ_*1, cony °Sh) corresponding to the cclumns of the

j-th class cf the i-th gr cup)

e denocte by v |
A

We assume.furthermore that we have a set of vertices of

a unit r-dimonsional cube, where r,is the power cf two.
et ( ? s messy (3r> be an arbitrary vertex. Then the
11 the vertices, determined by the assemblies,
’ "
each of which differs from the as sembly ({61’ ceny F*r)

oy the value of exactly one coocrdinate. is called a

sphere., We denote by 4?(1 eeey X_) the characteristic

function of the sthere. It is known /9/ that 1if r 1is

s power of 2, then the r-éimensicnalvc"be can be brcken

D
n
-

un iato 2 /r non—vntereect ing spher

“e netwo"k 4L which realizes the function

v, '2, ooy xn\ is conatructed by connecting in
varzllel the neuworvs ﬁng which realize the functions
£ (X, Fny eesy X_Jo Let us describe the structure
it71? T2 n

cf the network ﬂL{. For this.purpose we construct




492"
(DL

Proof. To construct s netwerk that reslizes the.

funetion £(x,, X 9 eeey ¥ ) 65 Q,., we use the method
172 1} £ o
of G, B. Lupanov, fsomewhat | (refining At{WLL the aid of
W
the lemmas just proved. Thus, let the funetion f be
anecified in the form of a table with L araneter k. e
treak up the rows of this tsbls into p groups as was

2one in lemma 3.2. Dach of the grou;s eccnteoineg evwzetly
s rows, with the ewcepticn perhape of the last one,
which contains '(e' &£ s) rows. Parts of the columns

cested betueen the rows of the i1-th group are broken

1 intc classes, in each of which are contsined only
those parts of the columns, which are identicsl tc each
cther., Obvicusely the number of such classes is equal

to the number of different parts of the columns helong-
ing %o the i-th group. ILet fij(yi’ Xos soes xn) be

a funct;on ceinciding witw that given on the j-th class
cf the i-th group and equal to zerc cn the remaining

sszemhlies, - Then

Tl<~a

f(zl,Zz. ...,2,‘)'-"—‘ \’/f (I‘.I’, 4~-9zn}0

with

Ty g B = ] (F o 2 (g 0 T,

— 69
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where
i (=, ""*h)"' vz, SRR
(the disjunction is taken over the assemblies (o{

vory uLk}, corresponding %o non-zero “ows of the tuble

2 . = 2 ' \p‘u -
of functions f,.) and o )(Y. 4y eeey X ) T \¢/ v gt
"L id k4l ? Tn Vel
N . - - . .
ceo le?j(tne ¢isjunction is taken over the ‘ascenblies
(X eeey K ) corresponding to the cclumns of the

j=th class cf the i-th group) /e

de dencte by , _
filzy ot z‘u)=‘,/fij(zt' PR AN

Ve assumeTfurthermore +hat we have z set of vertices of

a vnit r-dimensional cube, where r is the power of two.

et ( Fl’ cees [2_) . be an arbitrary vertex. Then the

cet of all the vertices, determined by the assemblies,

Y

kel L3 [} L] ) . ’ , 5\
esch of which differs from the assembly ({gl, eeny 7

oy the value of eyactly one coorélnate, is Calleﬁ a

Y

sphere, We denote by ¥y, ..y %) the characteristic

‘._h

function of the sthere. It is knoun /9/ that ifr
s power of 2, then the r-dimensional cube cazn be dbroken
uy inte 2 ¥/r non-intersecting s f TesS.

The ﬁetwo”K ﬁb which realigzes the funciion

a

., Ty eeey Ky ) is constructed by cornect_~$ in

Ke]
3]

r¢_1e1 the netvorks uﬁ which;fealizé:the funetions

fi(xl, Eyy eeey ¥p ). Let us describe the structure
7

the network QL/ For this. purpose we censtruet




& systenm El, qj cf terminal networks M

such that each exceeding one is cbtained by adding to

the preceding one (Fig. L) and’l»i, = %. Ml is a

{-1e

,cc”‘tact tree of the variables x s a

k+l’ RXXE Fur
L , 2 J-temlnal network (where r is the power of twol,
}mich *eah?ﬂs all the conjunctions of the form
i;:&al’f.. 2\3%#P” ¥, is obtained from M, by joining

the outputs, corresgponding to the points of the same

spghere for & certain i‘ixed brezidown of the cube

{( *1, veay (k*r)} *ntc spheres. ‘ is a El 2 /J

~terainal network, which realizes the functlons

T
), where h = l, 2 ceey 2 /I'. M

~»

F (x .
ra eai? **r Frer
is a multi-terminal network, obtained from M, by

connecting @ each of the outputs) contact trees

r
My is thus a [;1, 2 /i]-

of the wvariables Xpepal? 02 X

~terminal nétwork, which realizes functions of the form

Ph(Thers « - o) Zpo) Zheret ... 20n

¥, is formed from M.:‘ by connecting to each output,

corresponding to a qpqere with a center 4t the point

’g' al? *%°3 & ke-r>’ a L*’ rj -terminal network of

A

e

the form indicated in Fig. 5. The resultant multi-
'1"1 .
~terminal network is & 1, 2 -terminal netwo“k,

which realizes conjunctions of the form xw\f(‘ XM

M

5 is obtained from ¥ by joining certain outputs

- <

..__ﬁ . i
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corresponding to the same sphere, so that the function
B (PPN T UPNORE R T W C TGRS Wi
is realized on the output constructed thereby. This

multi-terminal network'realizes all the’functions

i : 2N
j: ({8 .-y.,p,J—i“Z.. j"""” "T ‘f

-——

hé is constructed by connecting to the output of the

rulti-terminal network MS’ correspondxng to the function
£12) |
idn
porfect disjunctlve normal form of the function
(1)
iJ
outputs into one. The multi-terminal network Mg (Fig. 6)

aH equiValent-—Irkﬁgtwork correspondlng to the

le, R ), and by subseouent joining of all the

is a (1, 1)-terminal network, which realizes the function
£.(%)5 eeey X,)e We omit the proof of this fact, since

it makex up the oontentiof reference /9/.
et us put rn2[‘/"°""] k=[210g,u} oand s-[::.!ﬁ]

We es*imate the number of contacts in the network,
which reallaes the function fo- It is obvious that
Lo, () < ( o+ :) (L (M,)+L<M.\ M))+L (M.\M»-&-L(M.\ M),
where the symbol L(T) denotes the number of contacts of
the multi-terminal network T, the factor (2 /q + 1)
is ‘the ma3or end of the number of p networks ab’ We

have

LMy <2, LM\ M) <2 =, LM\ MY oS




It $r' d8dition thé pavameter s satistiss the
inequallity - . |
| —,,—,-; < svsz‘L
then accordzng to 1emmd 3. 2 the number of classes of
columns of each group doee not evceed 2\\,//and ‘
i\ M) < s k(2 /r)2\/. 'f‘hu-a, when the fore-

going 11mitutions are satisfied, we have

+sk — 2"')—.—.:

+2"'*+(—-+1)(2'ﬂ+'2"" +slcz' ")

Lo, ()< (—-—

Inasmuch as e ) |
-—'—;—E < r<'|f. 2logyn~—1 <i¢<2log,n.

”":"/’"‘ 1<s <""2‘/'—'ac<c <1

we obtain )

o

Iq(n)<n 2V i.}.u’.}.f._'__.‘_'?_"l___.*.l}

\n 2Vn—
V"iH ants n-—ZV; Z”’V-;"“
x(z ﬂf*' F2E logan) -
Hence
Lo, () <=~ (1 43 (n),
where

-~ '2__"21'/‘3'4-1
l(n) —-2Va- 1+ +<u 2}/7; “)X

-7 -
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v"",,/r

o

Cbviously, E£(n) < e/« n, and therefore £(n) ~«> c

as n —» &= .

let € >0 be an arolnrary small number., We
chocqanmoe“s E 2'_3 such that
e specify a number stuch ‘that when n 7 N, we have
' | a(n)(c,
Inasnuch as s = |. n-2vn 7 .. and k = [2 l-ogenj ’ -
= - OB,

thére e-srlsts such a.Nj, that when nE=> N,

Ny
2 <3<2"

If we now take N = max (Nl’ NZ; -13) we have when n > ¥
Lo.(n)<—-(1+¢(n))<-—(¢+‘J(1+h)(l+‘:)<—'i'-9—-
This proves the theorem completely. From this theoren
we readily obtaln three other statements: ' .
. Theorenm 3.2. Tor uqy 1nvariant ‘class Q{, for
which“b <& S. 1, we have

-9

Lo,m~ 2,

Proof. To estimate the lower bound of LQ{ {n) we
use a theorem by C. B. Lupanov from reference /7/, where
under very wea 1im1tat.gops, which are sa’cisf*ed under

our conditionsy 4%t is prOVed tna+ for eny £ 2 © and

- —




n 2 N( E; we have A |
/—e(7l)>(| Po (n)

log Pq(n)
6’
Since lin \] Py (n) = theh
2P, (7} 2

- ‘°"">“ hm—r—r

Comp"“:ng thisxrelat;on”with the'estimate given by

theorem 3.1, we obtain finally

@m~$.
This proves the thecrem.
Trhus, we havé senarated a ‘continual fam i‘y of
classes,ch(O <<~f§. & 1), for which there exists a

allows us to realize functions from class er by meens

of .contact networks wéih-eentagtg whichv¢cntain

o
ta
!

ymptotically not more than LQ&’(n) contacté, The

-2

atter is evidence that in a certain sense the method
does admit of any essential improvement. This result

disclosed the asymptotic behavicr of thHe' functions

‘Lqéﬁ(n) for .a continuum of classeg.

© N :
An essentizl role is played in the establishment

~

¢t this faet by the pos ib‘li*y of 1'*eg.lz.zing 1ower-

~hound esiimate for the funection L, (n) for a

~continual femily of classes, which makeE the use of the

—~ 75 -
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" Lupanov. theorem essential.
Theorem 3.3. For ary 1nVariant class QJ,, for
which d(; we have o

. Q
lim
n-lno‘i L(n)

== 0.

—Proof. USlng /7, 12/ the 1ower-bound es*imate

’l

for the quantity L{n) and the uppe”-bound estimate for
the quantity LQG_jn), provided by theorem 3.2, i.e., the
fact that when n > N(£) | ' o

L >(1—9) 2 & Lo, () < =,

we Obtain LQ (n) )
4 [
- 0< L(n) < 1—¢ °

This leads directly to the required resulﬁ.-
This‘*hncrem is conteined in /18/ ané shows that
in the case Cf’- 0 the function of tﬁe lass Qc('ad“_
5? a substaqt*ally simnler netvork realization, than in
the general case, Theorem 2.6 is evidence that %«e 2
situation of this kind exists for a continual family of
invarianf classes. In'particular, the invariant classes
1isted 4in evamples 1 -- 6 (p. 87 /of source/) admit of
a sinpler network realization. However, the aprlication
‘6f theoren 3.3 to the magority of the indicated .clacses

is not so 1nterest1ng, since methods of a simple network
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rea;ization .o’ the ;unctions of theee classes are known

without unem._ Wortnv ‘of at'cention here 1is only the clas

of monutonle funets ons, for which thecrem 3.3 establishes
the existence of a swp:.e’" '\ctworﬁ rezlization, than in
the general case. Ihne autnor e-,-presées his confidence

tnat Tor all invariant classes of rractical interest

& = ¢, and ccnsequently, theorem 3.3 1s velid.
e

3

Treorem 3.4, For each invsrianit class Q (0 L& £

the following relation holdls

Lo (.
. Le,m
‘hm 0] - a

b

L, Sclution of the Problem in the Class of Correct

We now iurn to the guestion of eonstructing the set
MY, which contains (for sny & > 0) an infinite rumber
of E-complex functions (see Sec. 1), tie., such that

for s ceruain seguence (n‘{} < n, < ees) W have

»

G et

Trivial arerments, eimilar to those carried out in
the in troduction, bmng to znlnu +he unOMgh" that "to

construct the function £ (yl, Xpy eess X ) é 10 1% 1s
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‘necess sary to review (scan) all the functions that devend
on n variables. However if no 11mitaticns are im posed on
i, »zans for solving the problem, a simpler algbrithm
can be indicated. |

Let the functlo F{m) be de4ided on & natural series
and let—it assume as va ues ‘unct*one from the set Ho,
namely -
Flm)= [ (2,2 Z;,5 - E z;nv),"';;
where f_ € ¥°. Tt 1s obvious that F(m) is a recursive
fanction. Let us join’it, for exsmple, to the inital
recursive funetions /24/. Then we can solve the problen
stasted, by using recursicns constructed on the specified
functions, in s trivial mannéf and gquite simply: 1t
1s necessary to take the values ofvthe function T
Incidentezlly, such a layout of the situation is nothing

pus a certain subterfuge, based -on the“fact-that'wé&have'

b

admitted as an elementary means a funct 1on whlch requires
a scanning of the same order to calculate as values, as
the scluiion of the initial problem.

Thus, 1f we wish to fofbid the use of a trivial
algorithm (complete sc: anning), it is necessary to impose
1imitations on the means of solvl ug +he problem., These
limitations are almad at b“eaﬂlng up the vicious cycle,

at which one admlts as e1 qtary means +hose ﬂeans,

that require the same scann ng (and pernaps an even
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greater one) as in the casé‘of'tﬁe tfiﬁial algé#ithm. -
| Thus, fpr~conveniénce we a§éume théf;we héve éq
algorifhm A, which coﬁverts the;natufal numbers into
functions of algebraic logié (say;_into & table of‘.
functions) Jon (Zigomye Zigmy» 25&) ﬁt—_frfn(zi,'o»;-‘ |
Zome - Zi Gm).

e : i m) . .
This defines_fhe‘ﬁ mapping .. F of the set of natural
numbers on the subset:of funetions of alveﬁraic logic,
1eCuy C |

F(m)=1(Zi,im, Tijom). -: -+ Ii"g::}

Definition. & a;gpriﬁhm 4 is called correcf, if
the image of the natUraifgériés'in the mapping T,
determined 5y_the algorithm 4, ié.an invariant class §Q
of fuanctions of algebraic 1ogic.; _ '

That this is a natural definition is dictated
by-the fact thaE usgally the“algorithm that cdhstructs
the function £(x1, Xp; eee) xn)'glso‘constructs;

1) #ny function equal to it, o

2) Any function obtained from f by\rénaming
(witaout identification) of the variables,

3) 4y function obtained from f by any substitution
of constants in place of (not necessarity all) the
varishles. | | |

Thus, usually the algorithm constructs a certain




invariant class § (see definition on p. 82 /of source/).
Theorem 4,1, The gldsureqﬁc of the set MO with

respect té'thé operations 1, 2, and'3,‘entefing:intb the -

definition of the invariant class, as Py, 1.e4y it

contains all the fﬁnqtions-of algebraic logic.

T . B )
Proof, Iet MO = Q =k P,. From tnis, on the

- . , : .éff
basis of. the corollary from theorem 2.5 lim Po(n) =2,
> ) _ . ‘ Py o> v
wnere & < 1. But then by virtte of the theorem 3.l
. L.q(n) ) - »
S Ly =<1t

The latter contradicts the fact that for a certain sequence

{fnk } (see definitiion of the set ¥°)
| lim Zen) " L
neo L () S
Conseqﬁently, the assumption that Q :q& P2 is incorrect,
Therefore Q@ = P, and this proves the theorem.
| Corollary.. If the set MO is such that for any n
ié contains "the mo§t4c0mplicatéd" function fn,‘i;e., ' -

L(fn) = L(n),4then the closure of the set #C with respect

%o the operations 1, 2, and 3 contains all the funciions

of algebraic logic.

The latter statement was predicted by the author
as a hypothesis in 195344195h,'and served as the
starting point for the investigations, the culmination

_of which is the present paper.
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~From this theorem-foliows directly cur principal
proposition. | |
Theorem 4.2, In_anyfcorrect algorithm, which-

constructs the set MO,-constructS'all.the fﬁnctionsAof

'algebraic logic,. i.e.,'in,other words, this ﬂ’gorithm is

the scanning of all the functlons cf 2lgebralc logice
In particular we also obtainzthe.followingz
regu lay v

CoroLlary. Any eeaaee%-algori*hm, uh:ch for any
natural n constructs the "most complica ted" funct;on fn’
1e€a, u(f ) = L(n), contains a complete scanning of all
tne'functions of algebrale logic.

It is necessary to make-aAremark‘concerning thé
'"result obtained., Theorem does nov state et all that in
order to find an individual “most comlex a functioh_.
£ (fl, Xy eees xn) it is necescary to scan all the
funetions that depend on n variables. It f0L10WS from
‘the theorem that to construct'the function fn zt is

necessary to scan all the functions. of algebraic logic _

that devénd on m(n) < n variables and that

m{n) —> &= (n —~> 2o ). In other words, ghcomplete

scanning is essential in order to-constrgcf the en?ire
class-Mo. _ -

"' Let -us now compare the .two approaches %o the
solution of the problem concerning. the coqctruct*on of

_the set M0, Earlier, in Sec. 1, we noted that if we

ey

RN

‘Na‘.q [




admit as possible means algorithms with elementary random
acts, then there exists = simple method of consfructlng

0
the set M~ with probsbility 1. However, in spite of this,

™

we are unsble to esteblish whether the result of such
constructibn does have the Peqiired propérties or not.
We have._just shown that in a class of correct algorifhms,
the construction of the set MO requires & complete
scznning of the functions o’ aL:ebralc logic. The latter,
in view of the impossibility of practlcal realization of
a comnlete scanning (eﬁen at values of n that are tco
large) is evidence of the imnosaibility of solving the
problem with admiss sible means. Under these conditions,
it reﬂawns for us either %o forego‘entirely problems of
this kind, designating ihem as incorrect, "poorly formulat ed“
or else to be satisfied with solutionS'in the class of
algorithms with elementary random acts.  In other words,
to do what is usually done in practice =- neglect events
‘of probability C, i.e., assume that the‘given construction
always gives the set MO. '

Thus, we have formula ted a problem that pertains
to network objects in terms that do not contzain the
probability concept. As %o the solution, it has a
probability-theory character. Consequently, in many
p*ob‘ems the network objects come -to the,forefront as

bjeets with qtatlstlcal nature. The latter pertains to
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'macroobjects, which have sufficient complexity./S/

In conclusion we note that the result obtained can
be readily extended to cases of realizatlon of functions
in the elass of compact-valVe networks /25/, in the-
class of networks of the type “formulas with memory" /26/
(which include electronlc networks), etc., 1e€uy those
cases when synthesis methods have been consuructed which
rake 1t possible %o establish an asvmptotic value for'
L(n). Aoparently thls problem 1ies now not in transferring
the result to. these types of networks, but in establishing
theorems for classes "of networks, 1n.which the elements
can vary over a widelfange. The result acquires thereby
a general-cybennetic significance.

Appendlx

..
* -

As shown by the analysis of Sec. 3, the complex1ty
of a contact_ networkﬂ/ which realizes the function
£(Xqy eoey X )}a;;ig%tgined by methods of references
/9, 12, 14, 27/, depends essentially on hiow many functions
can be obtalned by substitutiog constants from the -
function f(xl, vees X Yo It is pos sible that the
comnlewity of the min1ma1 network of the func ion
£(X7y e0es X SOPEE .e., L(f), 1s determined to a great

extent by the number s(£), which denotes the number ‘

| . of pairwise-unequal functions, obtained from a given

_.né3 -




“function £ by substitution of ‘constants., In other
words, +he quantity Q(f) represeqts a measure . of
inform ation on the compleyity of the minima’ contact
network, which can be determlned from funct nal
considerat;ons. In this connection, the quanulty S(f}
1s of interest, Fowever, an estimate of the auanu;ty
§{f) in general form entails_conszderab;e d+zf1cu¢ules,
and ve shall therefcre estimate the quantity S(n) where
B S(n)~ mde(ﬁ A -
(the meximum is taken over all the *uncuions-f which
depend;gn n VarlapleS/. N o -
rJ-"aeor‘em. '
| S(ny~3"

Proof. Since the number of pogsible substitutions
of constants in'e funetion ¢f n variables is 3", then
obvionsly S(n) K 3% _Let us show that when n > ME)
we have the}ineqﬁality Sn) >  (1 -g )37, |

(Ol

Fig. 7 shows on the le fu anc ‘cn the r;g ht, in
certain sequence, all the ;unctlons f vlic“ depend on n
N TR IO
a4

from the left coiumn tc function

origir ateq ;n f,, if there existsxat least oﬁe sub-
stitution of constunte in tae ‘zncrlon f., which converts

it into a functLon equa7 to f.. We denote by t(fi) and
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'74f(f ) the numbers of vectors which originate 1n fi and

'enter in fj respectively. From the construction we have

T
‘(f{) ‘S(ft) % Et(ﬁ)"z‘ (f;)
Let f;ixl, ceey X ) depend- eseentially én the variables

xil, ooy Xyy (for _convenience let- 1,5 1 eeny 1, = k), |
i.€4y £, (xl, cees X, )*- fj(xl, vesy xk).‘ Then each
function fi(xl, coey x ) from which we can obtain the
function fﬁ by substitution of constants, ehould contain
when expanded in the variables xk+1, seey Xp a term of
: - "”:dbﬁcﬁ,",,ga.
e(f,»z”‘ -:(z" —'1‘)”"._ AU

-

and

s+ W

: Z t(f)> 2 C"P‘(k)tZ’ —-(2"-1)

where N e et s . . .
iA"‘(ls)>2"'--l:2""v“é -

(see formula on pe 87 /of source/). Let X ;> 1og2n, then

)

ZQC‘J‘ W - - 1>

and




) k>!'os:=_n : .22'k sz 227
Let ur*hermore, for logyn :>,Hl, the ineqn ifty
K/ 2 < i-'./_j be satisfied. Then

e =(f;>>(‘“‘f)2" ",f"z“"u+om)
Ja=t k>loenﬂ

Finslly, assume. that when 1og2n :> N, we have-

fe(t) < % &nd 2 C*,.2"*"< 3"
RQlogen

,~

e then obtain for log,n>> max (N, Nz}

22" 22"

z S(L)>Z eu,>>u —g2¥. 3

n 22‘
Sm)-2"5 3. S() > (1 =023

or S(a)>(1—9)-3"

This proves the theorem.

Theorem. Let E:;> 0 be a number as small as
desired

. The fraction of &ll the functions £, (¥, eeoy X, )
C n '
fer which S(£,) <: (1 - )3 ,ﬁltb respect to the

. S

nunber of 211 the ;uncnl ns of n vsrlables, tends to zero
Witk increasing ne.
Proof. The iheorem follows.from inequality (*J.

Let 3( %\, n) denote the number of all the functlons
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» ¢ e

(xl, ceey Xy Jofn variablbs, for which S(fi)<<:
< (1-5‘ n We have |
- 2 S+ > _S(f‘)>u-c)2”‘3'
- BUIS -3, 8i; K(l-t)s

From.xhiS'it foilows that,.*w

. IZ"-p(& n)13'+ 13 n)(t—a)3*>u-‘)2‘ 3'
O "
Mi. u)

23‘ <8 .‘...

':.Thié prcvés fheaﬁhéoiemAcompiétely.
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